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Analyzing the Impact of Buffer Capacity on
Crosspoint-Queued Switch Performance

Guo Chen, Youjian Zhao, Dan Pei∗, and Yongqian Sun

Abstract: We use both theoretical analysis and simulations to
study the impact of crosspoint-queued (CQ) buffer size on CQ
switch throughput and delay performance under different traffic
models, input loads, and scheduling algorithms. In this paper, we
present the following. 1) We prove the stability of CQ switchusing
any work-conserving scheduling algorithm. 2) We present anex-
act closed-form formula for the CQ switch throughput and a non-
closed-form but convergent formula for its delay using static non-
work-conserving random scheduling algorithms with any given
buffer size under independent Bernoulli traffic. 3) We show that
the above results can serve as a conservative guide on deciding the
required buffer size in pure CQ switches using work-conserving
algorithms such as the random scheduling, under independent
Bernoulli traffic. 4) Furthermore, our simulation results u nder
real-trace traffic show that simple round-robin and random work-
conserving algorithms can achieve quite good throughput and de-
lay performance with a feasible crosspoint buffer size. Ourwork
reveals the impact of buffer size on the CQ switch performance and
provides a theoretical guide on designing the buffer size inpure
CQ switch, which is an important step toward building ultra-high-
speed switch fabrics.

Index Terms: Crosspoint-queued switch, performance evaluation,
switch fabric.

I. INTRODUCTION

AS content-rich Internet applications such as video stream-
ing, audio streaming, file sharing, and live video/voice

call, become increasingly popular, the demands for higher back-
bone bandwidth have grown extremely fast. For the increasingly
growing link rate, the switch fabric in core routers has onlya
very short time (e.g., 5.12 ns for a 64 bytes long packets to
be transmitted in a 100-Gbps link) to schedule and send out
a packet. Thus, how to reduce the scheduling time in a switch
fabric, becomes a huge challenge. Most of the previous switch
fabrics, including the input-queued switch [1], [2], combined-
input-and-crosspoint-queued (CICQ) switch [3], [4] and multi-
stage switch fabrics such as those in [5] and [6], allocate major
buffers at line cards instead of at switch fabrics. To prevent pack-
ets from conflicting and being corrupted at the switch fabrics,
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Fig. 1. The CQ switch model.

every scheduling cycle in these approaches requires a round-trip
communication between the line cards and the switch module,
which limits the switching speed. To reduce power consump-
tion, the line cards and switch module in modern core routers
are often placed in different racks with a distance of from a
few meters up to 60 m, as presented in [7]. Assuming that the
length of the inter-rack cable is 2 m long and the propagation
speed is2×108 m/s [7], the back-of-envelope calculation shows
that each scheduling cycle has at least a 20 ns delay caused by
the round-trip communication, which becomes a bottleneck in a
high-speed switch.

Recently, to overcome the above limitations, both the
academia [8]–[12] and industry [13] have shown growing inter-
est in CQ switches (shown in Fig. 1). Packets are buffered only
at each crosspoint using on-chip memory; thus, switch decision
can be independently and locally made by each output scheduler
solely based on the conditions of the buffers in the same column
as the output scheduler. Therefore, scheduling algorithmscan be
developed without communications between the line cards and
switch module, which greatly reduces scheduling delay.

Despite the great promise of the CQ switch1, a clear under-
standing is lacking on how to design the crosspoint buffers to
meet the overall performance requirement of the switch fabric.
In this paper, we take the first step toward this direction. Wefo-
cus on understanding the impact of buffer size on the CQ switch
performance. Previously, [8] presented an accurate analytical
model for pure CQ throughput and delay, assuming abuffer size
of oneand independent and identically distributed (i.i.d.) uni-
form Bernoulli traffic. However, for larger buffer sizes, the au-
thors introduced only approximate analytical models and simu-
lation results for thethroughputonly. No theoretical or simu-
lation analysis on the switch average delay was presented for
crosspoint buffer size larger than one. Later on, several pa-

1Although CQ switch was considered many years ago to be difficult to im-
plement due to the scarcity of on-chip memory, modern technology has made
feasible the implementation of CQ switch fabrics with largecrosspoint buffers.
Recently, [8] has revisited the CQ switch and proven the feasibility using semi-
conductor integration technology at that time by showing that a crosspoint buffer
could store over 3 Mb packets for a switch with more than a hundred ports.
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pers [9]–[11] have usedsimulationsto study pure CQ switch
performance for buffer sizes larger than one under traffic mod-
els such as the uniform Bernoulli and bursty traffic.

Compared with these related works, the present paper is the
first one to provide anexact theoretical performance formula
for a pure CQ switch in terms ofboth throughput and delay
performancewith buffer sizes ofone and largerunder any in-
dependent Bernoulli (both uniform or non-uniform) traffic.The
contributions of this work are summarized as follows:
• We prove that the CQ switch can achieve 100% throughput

(or stability) as the crosspoint buffer size approaches infinity,
under any work-conserving scheduling algorithms only under
the assumption that the traffic obeys the strong law of large
numbers (SLLN) and without output oversubscription.

• To the best of our knowledge, this paper presents the firstex-
act closed-form formula of the CQ switch throughput for any
given buffer size and presents the firstexactnon-closed-form
(but convergent) formula of the delay for any buffer size, both
under independent Bernoulli traffic, using a static non-work-
conserving random (nWCRand) scheduling algorithm.

• Using mathematical proof as well as the comparison between
the theoretical value and simulation results, we show that the
theoretical value can serve as a conservative guide (a loose
lower bound performance) for designing buffer sizes of a CQ
switch using work-conserving scheduling algorithms.

• Our real-trace simulation results show that using simple work-
conserving algorithms, the CQ switch can realize a very good
performance with moderate memory resource consumption,
which shows its feasibility in practical use.
Our work reveals the impact of buffer size on the CQ switch

performance and provides a theoretical and conservative guid-
ance on deciding the required buffer size in pure CQ switch,
which is an important step toward building ultra-high-speed
switch fabrics. Acquiring a better understanding of the CQ
switch is also an important step toward building multi-stage and
multi-plane switch fabrics with large capacity. Scaling upthe
CQ switch to a larger self-sufficient switch fabric is worthyof
further study, which is beyond the scope of this current work.

II. CQ SWITCH

In this section, we briefly describe the CQ switch model and
provide some fundamental definitions used for the rest of our
paper.

A. CQ Switch Model

Let us consider anN×N CQ switch, as shown in Fig. 1. The
ith input andith output are denoted byIi andOi, respectively.
XBij represents the crosspoint buffer betweenIi andOj , where
i, j = 1, · · ·, N . We assume that time is slotted, and all the pack-
ets are segmented into fixed cells before being sent to the switch,
and all the internal and external links of the CQ switch have the
same capacity to transfer one cell per time slot. We follow this
assumption for the rest of this paper. TheXBij size isLij cells.

At the beginning of a time slot, one or no cell arrives at each
input. If a cell arrives at inputi heading to the outputj at the
start of a time slot, it is buffered inXBij in a first-in-first-out
manner if the buffer is not full. The cell will be dropped when

XBij is full. Within the same slot, the scheduler of each output
independently selects one of the buffers in its column accord-
ing to a certain scheduling algorithm and sends the head-of-line
(HOL) cells out of the switch through the output if the selected
buffer is not empty. If an empty buffer is selected, no cell is
scheduled out through this output in this time slot. It is note-
worthy that the departure steps at different output schedulers are
performed in parallel.

B. Definitions

First, we provide some definitions that are related to the per-
formance of a switch fabric.

Definition 1. The throughputof a switch fabric is the ratio of
the number of cells that traversed the switch to the number of
cells that arrive at the switch as time goes to infinity. We define
TP as the throughput of the switch.

Definition 2. The loss rateof a switch fabric is the ratio of the
number of cells dropped by the switch to the number of cells
that arrive to the switch as time goes to infinity. We defineLR
as the loss rate of the switch.

Proposition 1. For a switch fabric with finite buffers, the
throughput of the switch is equal to one minus the loss rate of
the switch if the average cell-arrival rate to the switch is greater
than zero.

Proof. Let us assume that the total buffers of the switch can
containL cells. We letλ denote the average arrival rate in all
inputs of the switch as time goes to infinity andL∗(n) de-
notes the total number of cells in the buffers of the switch at
time slot n; henceL∗(n) ≤ L. We defineCa, Cl, andCt

as the total number of cells that arrive, are lost, and traverse
the switch as time goes to infinity, respectively. Obviously,
Ca = limn→∞ λ · n, andCl = limn→∞ λ · n · LR. Then,
we haveCt = limn→∞(λ · n− λ · n · LR− L∗(n)). Thus,

TP =
Ct

Ca

= lim
n→∞

(1 − LR−
L∗(n)

λ · n
) = 1− LR.

Definition 3. Thedelayof a switch fabric is the average delay
of all the cells that have traversed the switch as time goes to
infinity. We defineDL as the delay of the switch.

Then, we provide some definitions related to the scheduling
algorithms.

Definition 4. A scheduling algorithm is calledwork conserving
if, by using this scheduling algorithm, any output of the switch
will always be busy if at least one buffer destined to this output
is not empty. Otherwise, the scheduling algorithm is callednon-
work conserving.

Definition 5. A scheduling algorithm is calledstatic if the rule
of scheduling remains the same regardless of the system state.
Otherwise, it is calleddynamic.

Definition 6. A static random scheduling algorithm is called
fair if at each time slot a column output scheduler randomly
(and with the same probability) selects one of the crosspoint to
send out its HOL cell.



CHENet al.: ANALYZING THE IMPACT OF BUFFER CAPACITY ON CROSSPOINT-QUEUED... 525

Finally, we present a definition related to the arrival traffic.

Definition 7. The traffic in an input is considered to beuni-
form if each cell that arrives at the input has equal probability of
heading to any output of the switch.

III. STABILITY PROOF

In this section, we first prove that the CQ switch can achieve
100% throughput (or stability) using any work-conserving
scheduling algorithms as the buffer size approaches infinity. We
draw this conclusion only under the assumption that the traffic
sum of all inputs heading to the same output obeys the SLLN
and the output ports are non-oversubscribed.

Let us consider the CQ switch model shown in Fig. 1. We
use the fluid model introduced in [14] to prove the stability of
the CQ switch and follow the same notations for ease in under-
standing. Before the proof, some definitions are given.

We letAij(n), n = 1, 2, · · · denotes the cells arriving at the
ith input heading to thejth output up to thenth time slot.Aj(n)
denotes the total cells that arrive at all inputs heading to output
j up to thenth time slot. Hence,Aj(n) =

∑n

i=1 Aij(n). A(n)
denotes the total number of cells that arrive to the switch upto
time slotn.

Definition 8. The traffic heading to the same output is called as
obeying theSLLN: with probability one,

lim
n→∞

Aj(n)

n
= λj , j = 1, · · ·, N. (1)

We denoteλj as the arrival rate of the traffic heading toOj .

Definition 9. Outputj is said to benon-oversubscribedif the
traffic satisfies

λj ≤ 1, j = 1, · · ·, N. (2)

We present the following theorem:

Theorem 1. A CQ switch can achieve 100% throughput (i.e.,
stability) using any work-conserving scheduling algorithm when
the traffic heading to any output of the switch obeys the SLLN
and all the outputs are non-oversubscribed.

Proof. We letDj(n) be the number of cells scheduled out from
the switch through outputj, i.e., the total departure of all the
crosspoint buffers belonging to set{XBij|i = 0, 1, · · ·, N} up
to time slotn. We letZj(n) be the total number of cells in all
the crosspoint buffers belonging to set{XBij |i = 0, 1, · · ·, N}
at the beginning of time slotn.

Then, for the CQ switch that uses any work-conserving
scheduling scheme, we can obtain the equation that for any
n ≥ 0 andj = 0, 1, · · ·, N ,

Zj(n) = Zj(0) +Aj(n)−Dj(n) ≥ 0. (3)

Dj(n) =
n
∑

l=1

1{Zj(l)>0}. (4)

Equation (3) shows the evolution ofZj where the gross number
of cells in all crosspoint buffers in columnj at time slotn is
equal to the initial number of cells inXBj plus the total arrival

Aj(n) minus the total departureDj(n) both until time slotn.
For a work-conserving algorithm, ifZj(n) > 0, a cell is defi-
nitely scheduled out through outputj. Thus, Equation (4) shows
that total departureDj(n) of outputj until time slotn is equal to
the cumulative number of time slots when at least one crosspoint
buffer in columnj is not empty.

Following the convention in [14], we denotėfj(t) as the
derivative of functionf with respect tot. Now, the fluid model
of the switch can be constructed as follows:

Zj(t) = Zj(0) + λjt−Dj(t) ≥ 0

Ḋj(t) = 1, if Zj(t) > 0.
(5)

According to Lemma 1 and Definition 3 in [14], the above
fluid model of the CQ switch is defined asweakly stableif, for
almost everyt such thatZj(t) > 0, we can prove thaṫZj(t) ≤ 0.

Next, we prove that the above fluid model is weakly stable.
We construct the following expression:

Zj(t)Żj(t) = Zj(t)(λj − Ḋj(t)). (6)

From Equation (5), whenZj(t) > 0,

Zj(t)Żj(t) = Zj(t)(λj − 1). (7)

According to the previous assumption, all outputs are non-
oversubscribed. Therefore,λj ≤ 1. Thus, we obtainZj(t) ·

Żj(t) ≤ 0 whenZj(t) > 0, which means thaṫZj(t) ≤ 0 for
everyt such thatZj(t) > 0. Thus far, we have proven the weak
stability of Equation (5).

Finally, from Theorem 3 in [14], a switch isstableif the cor-
responding fluid model isweakly stable. Therefore, the stability
of the CQ switch has been proven. A stable switch has

lim
n→∞

Dj(n)

n
= λj , j = 1, · · ·, N (8)

which represents the fraction of time when outputj is busy as
the time approaches infinity. Here, we can see that as arrivalrate
λj of the traffic heading to outputj increases up to 100%, the
switch can achieve 100% throughput.

IV. PERFORMANCE ANALYSIS USING DIFFERENT
BUFFER SIZES

Next, we focus on presenting a theoretical throughput and a
delay calculation expression according to the buffer size in this
section. We derive an exact closed-form formula for the through-
put and an exact non-closed-form formula for the delay of the
CQ switch assuming a static nWCRand scheduling algorithm
and independent Bernoulli input traffic. Deriving such exact for-
mula for the work-conserving scheduling algorithms is diffi-
cult [8]. Considering the feasibility and simplicity of thederiva-
tion, we use a non-work-conserving algorithm here. Moreover,
we prove that the theoretical analysis result of the nWCRand
scheduling algorithm can serve as a conservative guide (a loose
lower bound performance) for designing the buffer sizes of aCQ
switch using work-conserving scheduling algorithms.
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We consider the CQ switch model shown in Fig. 1. We as-
sume that the cell arrivals at each input are governed by an in-
dependent Bernoulli process and with fixed probability heading
to each output. Each output scheduler uses a static nWCRand
scheduling algorithm. We use the following notations:
ρi , The Bernoulli parameter of the cell-arrival process in in-

putIi.
akij , The probability ofk cells arrived atXBij in a given time

slot. k = 0, 1.
dij , The probability of any cell arrived atIi heading to output
Oj .

∑N

j=1 dij = 1 and0 ≤ dij ≤ 1 for i = 1, · · ·, N .

sij , The probability of crosspoint bufferXBij being selected
by outputOj .

∑N

i=1 sij = 1 and 0 < sij < 1 for j =
1, · · ·, N .

For a better understanding of these notations, we present a spe-
cific example. We consider the condition that the CQ switch uses
fair random scheduling with uniform i.i.d Bernoulli traffic. Un-
der this assumption, we can haveρ1 = ρ2 = · · · = ρN because
the input arrivals are governed by the i.i.d Bernoulli process, and
all the Bernoulli parameters are the same. Additionally, because
the input traffic is uniform and the CQ switch uses fair random
scheduling, we havedij = sij = 1/N(i, j = 1, · · ·, N).

Let us assume that the cells that arrive at all the inputs are gov-
erned by an independent Bernoulli process and the CQ switch
uses a static nWCRand scheduling algorithm. We present a for-
mal description of the scheduling cycle in a time slot as follows:
• Arrival Step: At the beginning of a time slot, for inputi, a

probability of ρi exists that one cell will arrive, and a prob-
ability of 1 − ρi exists that no cell will arrive. The cell that
arrives at inputIi has the probabilitydij to head to outputOj .
The succeeding cells and cell arrivals at different inputs are
independent.

• Departure Step:Within the same slot after the arrival step,
each output scheduler picks a crosspoint buffer out of all the
buffers in its column with a static nWCRand scheduling algo-
rithm. For outputOj , it selects crosspoint bufferXBij with
the probabilitysij and schedules the HOL cell out of the
switch if the selected buffer is not empty. Otherwise, no cells
are transmitted throughOj in this time slot. Each output in-
dependently schedules cells in parallel.
We letLij denote the capacity of crosspoint bufferXBij in

the cells. We assume thatLij = L(i, j = 1, 2, · · ·, N) for ease
in presentation, which means that all crosspoint buffers have the
same capacity ofL cells. We perform our analysis on particular
crosspoint bufferXBij without losing generality.

We assume random variablesAij ,Ai, andA to be the number
of cells arriving atXBij, inputIi and the whole switch during a
given time slot, respectively. According to the conditionsgiven
earlier, the value ofAij can only be zero or one. We recall that
akij denotes the probability thatk cells arrive atXBij in a time
slot; then,

a0ij = P{Aij = 0} = 1− ρidij

a1ij = P{Aij = 1} = ρidij

akij = P{Aij = k} = 0, k 6= 0, 1.

(9)

We define random variableQij(m) as the cells inXBij at the
end of time slotm. According to the conditions stated before,

0 1

 

L-1 L

 

 

. . .

 

Fig. 2. Quasi-birth-death state transition diagram forXBij .

we can determine thatQij(m) can be modeled as a discrete-
time quasi-birth-death process, as shown in Fig. 2. The transition
diagram can be interpreted as follows:
• The transitions from statel to l + 1 mean the probability of

an arrival at the buffer, and the buffer is not selected by the
output scheduler.

• The transitions from statel to itself are calculated under three
different conditions. 1) Whenl = 0, it is equal to the proba-
bility of one arrival and one departure plus the probabilityof
no arrival. 2) Whenl = 1, · · ·, L− 1, it is equal to the proba-
bility of one arrival and one departure plus the probabilityof
no arrival and no departure. 3) Whenl = L, it is equal to
the probability of one arrival and no departure (the cell will
be dropped in the arrival step when the buffer is full) plus the
probability of no arrival and no departure.

• The transitions from statel to statel − 1 are calculated under
two different conditions. 1) Whenl = 1, · · ·, L − 1, it is
equal to the probability of no arrival and one departure. 2)
Whenl = L, it is equal to the probability of the buffer being
selected (the buffer length will still beL before the departure
step begins because the cell will be dropped in the arrival step
when the buffer is full).
We letQij denote the steady-state queue length ofXBij ac-

cording to the formula of the steady-state probabilities ofthe
discrete-time quasi-birth-death process [15]. We can obtain the
steady-state queue length distribution as follows:

η0ij =
1

1 +
∑L−1

l=1

(

(1−sij)a1

ij

sija
0

ij

)l

+ a0ij

(

(1−sij)a1

ij

sija
0

ij

)L

ηlij = η0ij

(

(1− sij)a
1
ij

sija0ij

)l

, l = 1, · · ·, L− 1

ηLij = η0ija
0
ij

(

(1− sij)a
1
ij

sija0ij

)L

(10)

whereηlij defines the steady-state probability of the length of
XBij to be equal tol, i.e.,Qij = l.

So far, we have derived the steady-state probability distribu-
tion of the length ofXBij . Next, we will use these results to
analyze the throughput and delay of the CQ switch.

A. Throughput Analysis

Now, we start to analyze the throughput of the CQ switch
using the results obtained earlier. Obviously, the probability of
a cell arriving atXBij being dropped is equal to that ofXBij

being full, i.e.,ηLij for steady-state.
We define random variablesDij , Di, andD as the number of

cells dropped atXBij , inputIi, and the whole switch during a
given time slot at steady-state, respectively. Obviously,Dij and



CHENet al.: ANALYZING THE IMPACT OF BUFFER CAPACITY ON CROSSPOINT-QUEUED... 527

Di can only be zero or one. Then, we can obtain the probability
of a cell arriving at inputIi being dropped in a time slot as

P{Di = 1|Ai = 1} =

N
∑

j=1

(dijη
L
ij). (11)

The above equation is derived from the fact that the probability
of a cell arriving at inputi being dropped in a given time slot is
equal to the sum of the probabilities that a cell arriving atIi will
be dropped at any crosspoint buffer of this line.

Further, we have the expectation of the dropped cells atIi
during a time slot as follows:

E(Di) = ρi

N
∑

j=1

(dijη
L
ij). (12)

Thus, we derive the expectation of the dropped cells at the
whole switch in a given time slot as

E(D) = E(

N
∑

i=1

Di) =

N
∑

i=1



ρi

N
∑

j=1

(dijη
L
ij)



 . (13)

Then, we obtain the loss rate of the CQ switch as follows

LR =
E(D)

E(A)
=

∑N

i=1

∑N

j=1 ρidijη
L
ij

∑N

i=1 ρi
(14)

where random variableA denotes the number of cells arriving at
the switch during a time slot andE(A) denotes the expectation
of A.

Therefore, from Proposition 1, we can obtain the closed-form
formula of the throughput of the switch as

TP = 1− LR = 1−

∑N

i=1 ρi

(

∑N

j=1 dijη
L
ij

)

∑N

i=1 ρi
. (15)

B. Delay Analysis

Subsequently, we analyze the average delay of the CQ switch.
Similarly, we begin by focusing on certain crosspoint buffer
XBij .

We let random variableWij andWi denote the time slots that
a cell spent at steady-state (i.e.,delay) in XBij and inputIi re-
spectively. At the time that a cell arrives atXBij , we assume
that buffer lengthQij = l. We recall that the delay of a switch
fabric is defined as the average delay of all the cells that have
traversed (not dropped) the switch (subsection II-B). Therefore,
we only consider those arriving cells that are not dropped atthe
buffer, which meansl < L, when they arrive. We letτnij−l de-
note the conditional probability that a cell is going to spend n
time slots inXBij before being scheduled out under the follow-
ing conditions: The cell comes to crosspointXBij , the buffer
length isl, and the cell is not dropped (i.e.,l < L). Thus,

τnij−l =P{Wij = n|Aij = 1, Qij = l}, l < L

=Cn−l
n (1− sij)

n−l
(sij)

l+1
(16)

wheren = l, l + 1, · · ·,∞. This equation denotes that for a
cell coming and buffered inXBij, the probability of cell delay

Wij = n is equal to that of the buffer having been selectedl
times duringn slots to move the cell to the HOL and the buffer
being selected again immediately aftern slots to schedule out
the cell.

We note that a cell delay is doomed to be not less thanl time
slots because the switch has to spend at leastl time slots to drain
the l packets already queued in the buffer. We also recall that
ηlij is defined as the probability ofQij = l. Thus, according to
the law of total probability, for a cell coming toXBij and not
being dropped, the steady-state probability of this cell delay in
the switch beingn time slots is equal to

P{Wij = n|Aij = 1, Qij < L}

=















∑n

l=0 P{Qij = l} · P{Wij = n|Aij = 1, Qij = l}
, 0 < n ≤ L− 1

∑L−1
l=0 P{Qij = l} · P{Wij = n|Aij = 1, Qij = l}

, n > L− 1

=







∑n

l=0

(

ηlij · τ
n
ij−l

)

, 0 < n ≤ L− 1
∑L−1

l=0

(

ηlij · τ
n
ij−l

)

, n > L− 1
.

(17)

Then, using (9), (10), and (17), we can derive the following
formula of the mean delay of a cell buffered inXBij as follows:

E{Wij |Aij = 1, Qij < L}

=

∞
∑

n=0

nP{Wij = n|Aij = 1, Qij < L}

=

L−1
∑

n=1

nη0ijsij

(

1− sij
a0ij

)n

+

∞
∑

n=L

nη0ijsij(1− sij)
n

L−1
∑

l=0

Cn−l
n

(

a1ij
a0ij

)l

.

(18)

Next, we draw the probability of a cell delay beingn time
slots if the cell comes from inputIi and traverses the switch, as
follows2:

P{Wi = n|Ai = 1, Qi < L}

=

N
∑

j=1

dijP{Wij = n|Aij = 1, Qij < L}.
(19)

Therefore, the mean delay of a cell coming intoIi and travers-
ing the switch is equal to

E{Wi|Ai = 1, Qi < L}

=
∞
∑

n=0

nP{Wi = n|Ai = 1, Qi < L}

=

N
∑

j=1

dijE{Wij = n|Aij = 1, Qij < L}.

(20)

Next, we acquire the delay of the switch (i.e., the average de-
lay of all the cells that have traversed the switch). Assuming that

2In the following equation,Qi denotes the length of the corresponding cross-
point buffer in which the cell coming fromIi is going to be buffered in.
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a total ofT time slots have passed from the beginning, then ac-
cording to the Bernoulli traffic model and the packet loss rate ob-
tained earlier,T ·ρi ·(1−E(Di)) cells come fromIi and traverse
the switch (i.e., not being dropped), on average. Because each of
these cells has a mean delay equal toE{Wi|Ai = 1, Qi < L},
the mean sum delay of all cells coming fromIi and traversing
the switch is equal toT · ρi · (1−E(Di)) ·E{Wi|Ai = 1, Qi <
L}. Then, the mean sum delay of all cells coming from all input
ports into the switch is equal to

N
∑

i=1

T · ρi · (1− E(Di)) · E{Wi|Ai = 1, Qi < L}. (21)

Thus the delay of the switch can be derived as follows:

DL =

∑N

i=1 ρi(1− E(Di))E{Wi|Ai = 1, Qi < L}
∑N

i=1 ρi(1− E(Di))
. (22)

Although the above formula of the switch delay is not closed-
form, we present a proof of its convergency as follows:

Proof. Obviously, from (20) and (22), we simply need to prove
the convergency ofE{Wij |Aij = 1, Qij < L} to prove the
convergency of Equation (22). We transform (18) and obtain

E{Wij |Aij = 1, Qij < L} =

L−1
∑

n=1

nη0ijsij

(

1− sij
a0ij

)n

+

L−1
∑

l=0

∞
∑

n=L

nη0ijsij(1− sij)
nCn−l

n

(

a1ij
a0ij

)l

.

(23)

We define functionf(L), which is the sum of infinite series
{fn}, as

f(L) =

∞
∑

n=L

fn (24)

wherefn is equal to

fn = nη0ijsij(1 − sij)
nCn−l

n

(

a1ij
a0ij

)l

. (25)

Then, all we need is to prove the convergency off(L). We
now use theratio test[16] to prove its convergency. We have

fn+1

fn
=

(n+ 1)η0ijsij(1− sij)
n+1Cn+1−l

n+1

(

a1

ij

a0

ij

)l

nη0ijsij(1 − sij)nC
n−l
n

(

a1

ij

a0

ij

)l

=
n+ 1

n
· (1 − sij) ·

(n+ 1)!

(n+ 1− l)!l!
·
(n− l)!l!

n!

=
(n+ 1)2

n(n+ 1− l)
· (1− sij).

(26)

Thus,

lim
n→∞

fn+1

fn
= lim

n→∞

(n+ 1)2

n(n+ 1− l)
· (1− sij)

= 1− sij < 1.

(27)

Therefore, according to theratio test [16] method,f(L) is
proven to be convergent. Thus, we can conclude that Equation
(22) is convergent.

So far, we have derived the precise expression of the CQ
switch throughput and delay using static nWCRand scheduling
algorithms. Naturally, an appropriate work-conserving schedul-
ing algorithm will lead to a better performance compared with
the nWCRand scheduling algorithm that we used to perform the-
oretical analysis. Next, we briefly prove that under independent
Bernoulli traffic, the WCRand scheduling algorithm (randomly
selecting a crosspoint-buffer from all the non-empty ones)per-
forms better than the static nWCRand scheduling algorithm both
in terms of the throughput and average delay.

Theorem 2. Under the same independent Bernoulli traffic,
a CQ switch using a WCRand scheduling algorithm has a
higher throughput and lower average delay than that using an
nWCRand scheduling algorithm.

Proof. Similarly, we could also build a discrete-time quasi-
birth-death diagram for WCRand, as shown in Fig. 2. As stated
earlier, for a fair nWCRand, we havesij = 1/N in each steady
state of the queue length. Unlike the nWCRand,sij of WCRand
between different states shown in Fig. 2 are not the same. We
let s′ij(m) denote the probability of crosspoint bufferXBij

being selected by outputOj using WCRand in statem and
s∗ij = max{s′ij(m), 0 ≤ m ≤ L}. η

′l
ij defines the steady-

state probability of the length ofXBij to be equal tol us-
ing WCRand. Because WCRand randomly selects a crosspoint-
buffer from all the non-empty ones in each time slot, we can
obtain

s∗ij ≥
1

N
= sij . (28)

Thus, according to the formula of the steady-state probabili-
ties of the discrete-time quasi-birth-death process, we can ob-
tainη

′L
ij ≤ ηLij . Therefore, we can conclude that WCRand has a

higher throughput than nWCRand using (15). In addition, from
(18)–(22), we can easily determine that WCRand has a lower
average delay than nWCRand.

Similarly, if we usethe frequency of a crosspoint queue be-
ing selected by the work-conserving round-robin (WCRR) al-
gorithm to approximatethe probability of a crosspoint queue
being selected by the WCRand algorithm, we can prove that
WCRR also shows better performance than nWCRand. Further-
more, it is intuitive that the longest-queue-first (LQF) schedul-
ing has the highest throughput. The strict proof of these two
work-conserving algorithms is beyond the scope of this paper.
Later, we will show by simulations that the above theoretical
analysis provides an appropriate lower-bound for a CQ switch
performance using the work-conserving algorithms.

V. VERIFICATION OF THE ANALYSIS AND REAL
TRACE SIMULATIONS

In this section, we first present the simulation results under
both uniform and non-uniformBernoulli traffic to verify ourpre-
vious theoretical analysis in subsection V-A. We consider four
scheduling algorithms in our simulations: nWCRand, WCRand,
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 nWCRand(TV) nWCRand WCRR LQF WCRand

(a) (b)

Fig. 3. Loss rate and average delay of a16 × 16 CQ switch under uniform
Bernoulli traffic withρ = 0.95: (a) Loss rate and (b) average delay.

WCRR, and LQF. We calculate the theoretical value (TV) of
the loss rate and the delay of the nWCRand scheduling algo-
rithm according to the previous results we obtained under both
uniform and non-uniform Bernoulli traffic. Various simulations
have been done under different loads and using CQ switches
with different port numbers. We present the results of a16× 16
10 Gbps CQ under a heavy load of 0.95. The results from other
scenarios all verify our former theoretical analysis and are omit-
ted here. All cells have a fixed length of 64 bytes (typical in
commodity routers), and the time slot of the switch is set to 51.2
ns according to the transmission time of a cell on a 10-Gbps
link. The displayed delay results are converted from time slots
to seconds by multiplying 51.2 ns by the number of time slots.
Each simulation run was conducted for109 time slots.

Second, in subsection V-B, we present the simulation results
of a16× 16 switch fabric under real-trace traffic using the four
work-conserving scheduling algorithms mentioned above. We
have shown that using the work-conserving algorithms, the CQ
switch is able to realize good performance with moderate mem-
ory resource consumption. Our data consist of two parts from
CAIDA [17]: two 1 min traces from 10 Gbps links, i.e., one
at San Jose and another at Chicago, respectivly. All the packets
are fragmented into 64-byte-long cells before being sent into the
switch fabric, and the time slot is set to 51.2 ns in the same man-
ner as presented earlier. We divide a 60 s trace into 16 equal size
segments for 16 inputs. The destination port of each packet is set
as the hash value of the destination IP address. The traffic dis-
tribution under this situation is not uniform but highly skewed
and bursty. We believe this is similar to the real condition in the
Internet. Approximately1.7× 107 packets with a total length of
1.15× 1010 bytes are sent into the switch fabric during each ex-
periment. We only present the simulation result of the San Jose
trace; the results of the Chicago trace are similar.

A. Verification of the Performance Analysis

Figs. 3 and 4 show that the results of nWCRand scheduling
algorithm are almost identical as the theoretical results we de-
rived earlier under both uniform and non-uniform traffic. Inves-
tigation into the slight difference at the right end of the curves
shows that the difference is due to the total experimental length
of 109 time slots, thus unavoidably leading to an approximately
10−9 difference between the theoretical and simulation results.
Under uniform Bernoulli traffic with heavy input load of 95%,
as shown in Fig. 3(a), with crosspoint buffer size of 256 (such
buffer size is easy to implement with modern semiconductor

 nWCRand(TV) nWCRand WCRR LQF WCRand

(a) (b)

Fig. 4. Loss rate and average delay of a16× 16 CQ switch under non-uniform
Bernoulli traffic withρ = 0.95 andω = 0.5: (a) Loss rate and (b) average
delay.

(a) (b)

Fig. 5. Loss rate and average delay of a16 × 16 CQ switch under real-trace
traffic: (a) Loss rate and (b) average delay.

technology [8]), the loss rate of nWCRand can be as low as
10−7 using the theoretical results we obtained earlier. Such a
loss rate is good enough for many switch fabric designs and pro-
vides a loose performance lower bound. Our results also show
that with only a buffer size of 32 cells, simple work-conserving
algorithms such as WCRR and WCRand can realize the same
performance in which nWCRand realizes with buffer size of 256
cells. Further, the experiment shows that the theoretical results
could serve as a loose performance lower bound for these al-
gorithms. Using a more elaborate scheduling algorithm suchas
LQF, no packets are lost during the10−9 time slot simulation
with only a buffer size of 16. With regard to the average delay,
our theoretical analysis shows that with a buffer size of 64,a CQ
switch can have a stable average delay of approximately10−5

s using nWCRand, which is shown in Fig. 3(b). Meanwhile,
the average delay is much lower at less than10−6 s using the
work-conserving algorithms.

Similarly, under non-uniform traffic, as shown in Fig. 4, our
analytic results are also verified and effectively provide loose
performance lower bound to work-conserving algorithms.ω in
the figure defines the unbalanced probability (refer to [3]) and
ω = 0.5 means the traffic is extremely non-uniform. In this sit-
uation, WCRand and WCRR have a much higher loss rate than
the uniform traffic due to the blindness to the traffic distribu-
tion of their scheduling manner. In contrast, LQF can adjust
to the imbalance. We have pre-adjusted the random weight of
nWCRand to be equal to the unbalance degree of the input traf-
fic; thus, its results are very similar to the uniform traffic.

B. Simulations under Real Trace

Fig. 5 shows the result of a16×16CQ switch under real-trace
traffic. The loss rate shown in Fig. 5(a) refers to the packet loss
rate. Once a cell of a packet is dropped, the packet is countedas
lost in the switch. We can see that a pure CQ switch can achieve
good performance with simple work-conserving scheduling al-
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gorithms. Fig. 5(a) shows that the switch has a loss rate downto
10−6 with a buffer size of 64 using LQF. A simple round-robin
or random scheduling is able to reach the same performance
with a buffer size of 256, which is totally within the capabil-
ity of modern chip technology. In addition, the delay perfor-
mance shown in Fig. 5(b) is very good. The delay here refers
to the average packet delay. We can see that the WCRR and
WCRand have better delay performance than LQF because star-
vation, which greatly increases the delay, may occur using LQF
algorithm. This result under real-trace traffic demonstrates that a
CQ switch with such scale can realize a very good performance
with a feasible crosspoint buffer size. Thus, a self-sufficient CQ
switch is suitable for ultra-high-speed link in practical use.

VI. CONCLUSION

This paper reveals the impact of buffer size on CQ switch
performance and provides a theoretical guidance on designing
the buffer size in a pure CQ switch. In addition, we show that
CQ is a promising building block for high line-rate switch fab-
rics. As a next step, we plan to actually design ultra-high-speed
and large-port-number switch fabrics with multi-plane or mutli-
stage structure using CQ as building blocks to scale up. We also
plan to design scheduling algorithms with performance better
than the round-robin, random, or LQF algorithms analyzed and
evaluated in this paper.
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