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Abstract—Modern data centers need to satisfy stringent low-
latency for real-time interactive applications (e.g. search, web
retail). However, short delay-sensitive flows often have to wait
a long time for memory and link resource occupied by a few
of long bandwidth-greedy flows because they share the same
switch output queue (0OQ). To address the above flow interference
problem, this paper advocates more fine-grained flow separation
in the switches than traditional OQ. We propose CQRD, a
simple and cost-effective queue management scheme for data
center switches, through only minor changes to the buffering
and scheduling scheme. No change to the transport layer or
coordination among switches is required. Simulation results show
that CQRD can reduce the FCT of short flows by 20-44% in
a single switch and 8-30% in a multi-stage data center switch
network, only at the cost of a minor goodput decrease of large
flows.

I. INTRODUCTION

As people and business increasingly rely on the Internet
in their daily life and work, the performance requirement on
the Data Center Networks (DCN), where most of the Internet
applications are hosted, has become more stringent. However,
recent studies have shown that short delay-sensitive flows from
the real-time interactive applications (e.g. search, web retail),
although contributing to majority of flows in DCNs [1], often
have to wait a long time at switches for buffer and bandwidth
resources occupied by a few of long bandwidth-greedy flows
(e.g., backup, replication etc.). This causes the collapse of the
throughput, and dramatically increases the flow completion
time (FCT) of most short flows [2].

As analyzed in many recent studies [1-4], the fundamental
reason for the above mentioned performance degradation is
that the commodity DCN switches’ traditional and coarse
(Output Queue, or OQ) queue management schemes are not
suited well for the DCN traffic characteristics, causing un-
necessary flow interference. We define that two flows are
interfered by each other when they contend for some shared
resources at switches, such as queue memory or link capacity.
Many transport layer solutions [2, 3, 5] and preemptive flow
scheduling architectures [1, 4] have been proposed to get
around the coarse queue management problem by optimizing
flows’ rate assignment and scheduling to keep the switch
queues near empty. However, all these approaches need to
modify end host’s protocol stack and face significant deploy-
ment hurdles.
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Different from these previous approaches, we address the
DCN flow interference problem by directly tackling its root
cause: coarse switch queue management schemes. Hence,
we argue that the DCN flow interference (between large
number of small delay-sensitive flows and a small number of
giant flows) calls for a more fine-grained queue management
than the current output queue (OQ) in the commodity DCN
switches. As such, we propose a simple and cost-effective
queue management scheme, crosspoint-queue with random-
drop (CQRD), where a separate queue is assigned to each pair
of input and output port. The proposed approach only requires
a minor revision to the switches’ queue management scheme,
without any coordination among switches, and without any
modification to end hosts. Through simulations, we show that
CQRD significantly reduces the flow completion time of short
flows by 20-44% in a single switch and 8-30% in a multi-stage
data center switch network, only potentially at the cost of a
minor goodput decrease for large flows. Furthermore, CQRD
is complementary to transport layer approaches, and a hybrid
of them could potentially achieve even better performance.

The rest of the paper is organized as follows. We review
the related works in Section II. In Section III, we use analysis
and simulation to study flow interference and its performance
impact in traditional OQ, HCF (state-of-the-art switch queue
management for DCN) [6], and CQ. In Section IV, we present
our CQRD approach and analyze how it can alleviate flow
interference in DCN. In Section V, we use simulation experi-
ments to show that CQRD greatly improves the overall DCN
performance over both OQ and HCF. Finally we conclude in
Section VI.

II. RELATED WORKS

Long delay of short delay-sensitive flows due to flow inter-
ference is a well known problem in data center network. We
describe several solutions below and illustrate the difference
between CQRD and them.

A. Transport Layer Rate Control

A major direction of prior work uses transport layer rate
control to reduce flow completion time of short flows. D-
CTCP [2] and HULL [5] apply adaptive rate control schemes
based on ECN [7] and packet pacing, to control the rate of
giant flows. By keeping the queue size of switches near empty,
they improve the overall FCT of short flows. D*TCP [8]
and D? [3] use the deadline information for rate control.
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They allocate the rate of each flow according to their deadline
information.

All these methods require a modification to end hosts’ TCP
stack to implement their rate control schemes, thus are not
well compatible with legacy TCP. In addition to TCP stack
change, some of them further require a significant change of
end hosts’ NIC [5] and/or switch hardware [3, 5]. Therefore,
it is hard to deploy these approaches in real DCN. Moreover,
precise rate control is a great challenge due to the bursty traffic
in DCN.

B. Preemptive Flow Scheduling

Another direction to solve this problem is the preemptive
flow scheduling. Recent work such as PDQ [4] and pFabric [1]
try to implement optimal flow scheduling to minimize the FCT
of short flows. However, these solutions are almost clean-
slate architecture that requires new end host protocol stack
and switch hardware design, which can be far from getting
deployed in reality. Furthermore, implementing PDQ is quite
complex, and starvation of large flows is a big concern in
pFabric.

C. Switch Based Solutions

There are also many queue management schemes in the
literature for switches/routers to provide fairness for TCP
flows, such as DRR [9] and SFQ [10]. However, they have
been designed for traditional routers and LANs, and not
applicable for (quite different) traffic characteristics in DCN.
Furthermore, recent work in [6] has shown that HCF outper-
forms them in DCN environment.

The most closely related work to CQRD and the state-of-
the-art approach in this space is HCF [6] (Hashed Credits Fair).
Similar to CQRD, HCEF tries to address the flow interference
problem by providing switch queue management scheme that
is more fine-grained than OQ. HCF sets two separate queues,
one high-priority (HP) and one low-priority (LP), at each
output. It hashes all the incoming flows into several bins and
assigns each bin a credit. Packets belonging to bins which have
credit left will be stored in the HP queue, otherwise in the LP
queue. Switches serve the HP queue if it is not empty. When
the HP queue becomes empty, HCF resets all the credits to the
initial and HP queue is swapped with LP queue. However, it is
challenging to hash flows uniformly using static hash function.
Therefore, HCF needs to change its hash function periodically,
which increases the cost on hardware. Furthermore, as will be
shown in Section III-C, HCF is not fine-grained enough to
solve the DCN flow interference problem very well.

IT1I. FLOW INTERFERENCE: CAUSES AND IMPACT

In this section, we discuss the causes and performance
impact of flow interference. We study different switch queue
management schemes, including traditional output-queue (O-
Q), the state-of-the-art DCN fairness queue management
scheme (HCF [6]), and classic crosspoint-queue (CQ) [11].
Through analysis and a toy example, we will show that CQ is
more promising to solve the flow interference problem.

A. Performance Metrics and Definitions

Following the convention in [1], we consider two main
performance metrics—flow completion time and goodput.
Flow completion time (FCT) is an important metric for short
delay-sensitive flows, and reflects how fast the flow has been
successfully transmitted. Goodput equals the flow size divided
by its FCT, which is crucial to large bandwidth greedy flows.

Similar to prior work [1], we define flows smaller than
100KB as small/short flows, flows larger than 100KB as
large/long flows, and flows larger than 1MB as giant flows
(special case of large flows).

At a given switch, when two flows have the same output port
and they overlap in time, we say these two flows output port
contending or simply output contending. Then, we define
a switch path as the pair of input port and output port on
the same switch. When two flows on the same switch path
overlap in time, we say these two flows are switch path
contending or simply path contending, which is a special
case of output contending. For flows that go through multiple
switches, we define two flows as path contending when they
are path contending at any of these switches.

In this section, we only focus on the output contending (but
excluding the path contending) interference.

B. OQ Switches

Typically, commodity switches in data centers apply OQ
with tail-drop scheme [2, 12]. Packets from output contending
flows are stored in the same queue at the specific output
port. This exploits statistical multiplexing and saves memory
resources to achieve a certain packet loss rate. However, it
may also cause a strong interference of flows which contend
for the same output.

Fig. 1(a) shows an toy example with an 8 port OQ switch
connecting to server 1-8 with each port respectively. Note
that each port consists of an input link and an output link
shown in the figure. Assume that there are seven flows coming
from inputs I1 to I7 respectively. All the flows are destined
to the same output OS8. Flows from 16 and 17 are giant
flows and the other five flows are short delay-sensitive flows.
While contending for the same output, the large flows quickly
occupy the majority of shared memory resource and the
capacity of output link. Packets of the small flows have to
wait unnecessarily, queuing behind the packets from the long
flow. This leads to a significant increase of packet delay for
small flows and impairs the upper-layer applications. As the
output contention lasts for a while, the output buffer will be
filled up and begin to drop packets of all short flows. This
further results in an overall performance degradation.

We use NS2 [13] for simulation and measure the goodput
and FCT of each flow in this toy example. Each port has a
bidirectional link rate of 10Gbps and a one-way link delay of
4us. Each port has a small output queue with a typical small
size of 36KB [2] (i.e., 288KB in total). Assume servers 6 and
7 are generating long file-backup traffic to server 8. At time
0, both servers 6 and 7 start to send a 100MB file using TCP
(flows 6-7) to server 8. Five milliseconds later, servers 1-5
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Fig. 1. Flow interference in OQ switch and CQ switch

start 5 delay-sensitive tasks and each sends a 10KB TCP flow
(flow 1-5) to server 8 at time 0.005s. TCP SACK [14] are
used for all the flows.

The goodput and FCT of each flow are shown in Fig. 2.
During this situation, the output queue of port 8 is quickly
filled up with packets of flow 6 and 7. Thus, packets of flow
1-5 are continuously dropped when they reach the switch. As
a result, their flow completion time soar up to hundreds of
milliseconds, while the theoretical ideal FCT should be as
low as tens of microseconds. Also, their goodput fall down
to lower than 1Mbps. Apparently, this will cause a dramatic
performance degradation of upper-layer applications.
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Fig. 2. A toy example of flow interference.

C. HCF Switches

Recently, a hash-based based queue management algorithm
for DCN switches called HCF (Hashed Credits Fair) [6] has
been proposed. Through hash and assigning credit, flows from
different bins can share the HP queue fairly. And when HCF
schedules packets out of HP queue, flows from different bins
could fairly share the link capacity. That provides a relative
good bandwidth fairness. However, it does not provide enough
buffer fairness between small flows and giant flows. Many
flows coming from different inputs still have to contend for
the same buffer resource. While large flows quickly consume

the credits of their bins, they fill up the LP queue quickly.
If small flows are unluckily hashed to the same bins, they
would be dropped. In addition, even if they are not in the
same bins, as the number of small flows grows larger, they
will also consume their credits and be dropped at the tail of
LP queue. That causes packet loss of many small flows with
inputs different from the few giant flow.

We simulate HCF switch in the same toy example, with the
same 288KB total memory. All the parameters of HCF are
set as the recommended in their paper (2 queues with same
length, 1 credit for each of the 20 bins, and periodical XOR
hash function). As we can see in Fig. 2, HCF greatly reduces
the FCT of short flows and serves two large flows fairly.
However, the packets of small flows also have been dropped.
That increases their FCT to around 1ms, which should be less
than 100us without loss.

D. CQ Switches

Recently, the decade-old CQ switching scheme, once con-
sidered infeasible for commodity switches when first pro-
posed [15], has been shown to become very feasible using
modern semiconductor technologies [11]. CQ offers full flow
separation for the flows that are output contending but not
path contending. As shown in Fig. 1(b), CQ switch reserves
separate memory resources for each pair of inputs and out-
puts. Packets arrived at each input are first buffered into
the crosspoint-buffer (XB). Then each output port, without
coordinating with any other ports, picks one of the XBs in
its column and schedules the head packet out of the switch.
Thus, flows from different input ports have separated buffers.
Also, by using simple Round-Robin (RR) scheduling manner
for each output, each flow from different inputs destined to
the same output shares approximately the same output link
capacity. Therefore, CQ switch can provide a performance
separation for flows coming from different inputs.

We simulate CQ switch in the same toy example. With
288KB memory in total, the same as in OQ switch, each XB
of CQ switch has a capacity of 4.5KB. As shown in Fig. 2
, with CQ switch, the FCT of delay-sensitive flows can be 3
orders of magnitude lower than the OQ switch and 1 order of
magnitude lower than the HCF switch. Also, the goodput of
those flows are 3 orders of magnitude and 1 order of magnitude
higher than the OQ and HCF switch. Although there is only
4.5KB buffer resource for flows 6 and 7 in CQ switch, the FCT
and goodput of these two long flows are almost the same as
in OQ and HCF switches. Meanwhile, CQ switch achieves a
very good fairness among flows.

E. Summary

Overall, the performance of flows that are output contending
with the giant flows is severely degraded by interference by the
giant flows in OQ. Although to a less extent than in OQ, HCF
still suffers from the same problem. Through separating queues
for flows that are output contending but not path contending, a
classic CQ switch can achieve much better performance than
0OQ and HCF in our toy example. We will present how to
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design a CQ-based scheme for more complex real-world DCN's
in the next section.

IV. CROSSPOINT-QUEUE WITH RANDOM-DROP SCHEME

In the previous section, we have shown that CQ performs
much better than OQ and HCF in the toy example where there
are only very small number of flows and the primary interfer-
ence is output contending only (excluding path contending). In
the real world DCNs, there may be thousands of flows come
and go, a large number of flows can overlap in time, and a flow
may go through multiple switches. As such, flow interference
becomes more complex, and both output contending and path
contending can happen. In this section, we will first make an
observation about DCN flow characteristics, which motivates
our CQRD approach. Then we present CQRD approach and
how it addresses the challenges faced in real world DCNs.

A. DCN Flow Characteristics

Srowsss)]
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Fig. 3. Traffic workload derived from real data center.

The workload from the characteristics of real operation
data centers [16] is shown in Fig. 3. In this workload, about
90% flows are small/short flows, and very few (about 3%) of
flows are giant flows. Based on the measurement results of
real operational large data centers in [2, 17], we make the
following observation.

Observation 1. Long bandwidth-greedy flows traverse a few
of switch paths in a DCN switch, while most of the switch paths
are transmitting short delay-sensitive flows. There are always
a large number (more than one thousand [17]) of active flows
in DCN. However, very few of concurrent flows [2] are larger
than 1MB. In a data center running data mining jobs, over 80%
flows are less than 10KB [1]. As a result, while some long
bandwidth-greedy flows passing a few of switch paths (defined
in Section III), the majority of switch paths are transmitting
short flows.

The above observation explains the significant flow inter-
ference in current DCNs. For example, a 24 x 24 aggregation
switch has 24 x 23 switch paths in total (assuming no flow is
destined to its coming input port). Assume that there are two
giant flows passing two switch paths. Meanwhile, there may
be hundreds of short delay-sensitive flows passing the other
550 switch paths. In a commodity OQ switch, 2 x 23 out of
these 550 switch paths have the same output queues as the
two giant flows, which interfere (and contend for paths) with
the hundreds short flows going through the same 46 switch
paths.

B. CORD Overview

We argue that the above observation calls for a queue
management approach that is more fine-grained than OQ to
reduce the probability of DCN flow interference. However,
it is desirable to maintain a good balance between queue
management granularity and the overhead/cost. In the ideal
and most fine-grained approach, if we could reserve dedicated
buffer and link capacity large enough for every single flow, the
flow interference is entirely eliminated. However, the memory
and link capacity needed for this ideal approach to deal
with the large number of overlapping flows are prohibitive in
practice. Moreover, it’s hard to dynamically allocate physical
resource according to the flow’s various needs (e.g. buffer
size or bandwidth), because these information is not available
to the switch, without big modification to its packet parsing
procedure or current network protocol stack.

We thus present Crosspoint-Queue with Random Drop
(CQRD), a cost-effective queue management approach that is
fine-grained enough to achieve desirable flow separation. The
basic idea of CQRD are two-fold:

o Complete separation between flows on different switch
paths, because a separate buffer is allocated to each
switch path, and packets destined to the same output port
but on different crosspoint buffers are scheduled in round-
robin fashion.

e When a crosspoint queue is full, random-drop is used
to alleviate the flow interference within the same switch
path.

Like original CQ switches shown in Fig. 1(b), CQRD allo-
cates separate crosspoint buffers (XB) with the same capacity
for each pair of inputs and outputs. Arriving packets are
first stored in the crosspoint buffer and wait to be scheduled
out by the output scheduler. CQRD uses Round-Robin (RR)
scheduling for each output to schedule the packets. It ensures
that each XB is fairly served. With separated buffers, flows
in different switch paths will not contend for the queue with
each other, although they might be destined to the same
output. Also, with RR scheduling, flows going to the same
output port is allocated with almost the same link bandwidth.
This addresses the output contending but not path contending
interference, and achieves swirch path separation.

Secondly, when the corresponding crosspoint buffer is full,
CQRD takes random-drop scheme upon packet arrival. Instead
of simply dropping the tail (as in classic CQ), if the XB does
not have enough space for the coming packet, CQRD will
randomly choose a packet in this XB and drop it. A flow’s
packets will be more likely to be dropped if this flow occupies
most of the XB, and vice versa. As such, if several small flows
are contending for the same XB with a large flow, packets of
those small flows still have a reasonable chance to get into
the buffer even if the buffer are currently filled up by the
large flows. That helps to alleviate interference within the same
paths.
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C. Implementation

One might wonder about whether it is simple and cost-
effective to implement CQRD switch with crosspoint buffers
large enough by modern technology. In fact, to build a typical
data center switch with 24 ports, it is easy to implement
crosspoint buffer with size of more than 10 kilobytes, only
using on-chip memory of a commodity FPGA chip [18, 19].
Moreover, [11] showed that a crosspoint buffer could store
over 3 kilobytes packets for a switch with more than a hundred
of ports, built with application-specific integrated circuit chips
(ASIC), which is much easier and cheaper today.

V. PERFORMANCE EVALUATION

To evaluate CQRD’s performance, we implement and sim-
ulate CQRD in NS2 [13], and compare its performance with
two other switch-based approaches, OQ and HCF. Because we
assume no modification to end host systems, the transport layer
and high-level flow scheduling approaches are not compared.
The evaluation is based on the following two experiments.
In experiment 1, we simulate a single DCN aggregation/core
switch. In experiment 2, a classic multi-stage DCN switch-
ing topology with 480 servers has been simulated. We first
describe the traffic workloads, simulation parameters, and
performance metrics, followed by the detailed results of the
two experiments.

Since giant flows are the triggers of DCN’s performance
degradation [2], we are mainly interested in the flows inter-
fered by the giant flows. We will show that OQ, HCF, CQRD
perform differently because they differ in queue management
granularity and how they deal with the output contending and
path contending flows.

A. Experiment Setup

Traffic Workloads: We derive our workloads from the
characteristics of real operation data center traffic [16, 17]
as shown earlier in Fig. 3. During the simulations, source
and destination of the flows are randomly chosen among all
the switch ports (in experiment 1) or among all hosts (in
experiment 2). The inter-arrival time of the flows obeys the
log-normal distribution [17]. We scale the flow inter-arrival
time to simulate the moderate (0.1), heavy (0.4), and extreme
(0.7) loads in the network.

Fig. 4 shows the ratio of flows that are output contending
but not path contending (OC-PC), path contending (PC), and
not interfered (Non-Interfered) with giant flows (as defined in
Section IV) in all the simulations. This figure shows that the
giant flows interfere with more than 50% of all flows although
they contribute to less than 3% of all flows according to Fig. 3.
And most of the interfered flows are in different switch paths
with the giant flows.

Simulation Parameters: All the parameters of HCF are set
as the recommended in HCF paper [6] (same as Section III-C).
During all the simulations, we use the SACK [14] version
of TCP, which has already been implemented in most of
the Linux release version. The initial window size and min
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Fig. 4. The number of flows that are output contending but not path con-
tending (OC-PC), path contending (PC), and not interfered (Non-Interfered)
with giant flows in the experiments.

retransmission-time-out (RTO) are set to be 4 and 200us
respectively, which is typical in DCN [1].

Performance Metrics: Following the convention in [1],
we consider two main performance metrics—flow completion
time for short flows and goodput for large flows. These two
metrics reflect the key performance of these two kinds of
flows.

B. Experiment 1: Single Aggregation/Core Switch

Port 1

Multiple I::>
o— Port 13 .
Flows . <):I MFLIJ|tIp|e
. . . o ows
Multiple _* * : :
Flows _Port 12 Multiple
Port 24 Flows

Fig. 5. Experiment 1: A 24 x 24 switch used in simulations

Setup: Our first experiment is to simulate the aggregation
and core switches with huge amount of flows passing by, and
compare different approaches in this situation. We simulate a
24 x 24 switch (a typical DCN switch) shown in Fig. 5. Each
port has a 10Gbps link rate and 44s link delay. This generates
a ~16us end-to-end round-trip time (RTT) without queueing,
which is realistic in the real DCN environment according
to [1]. In all three schemes, we assume the on-chip memory
for packet buffers are SMB, which can be easily implemented
by commodity FPGAs. As a result, each output buffer has
~210KB in OQ, which conforms to the convention [1]; HP
and LP queue each has ~105KB in HCF; each crosspoint
queue buffer has ~9KB in CQRD.

During the simulation, 1200 flows are generated to 24 ports.
The workload is as described before.

Results: Fig. 6 shows the overall FCT of all short flows and
goodput of all large flows at various loads of 10%, 40% and
70%, which represent moderate, heavy and extreme loads. We
observe that, with any load, CQRD has a much better overall
FCT of short flows, which contribute to about 90% of all flows
according to Fig. 3. Almost all the percentile of CQRD’s FCT
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Fig. 6. Experiment 1: Overall CDF of all short flows’ FCT and all large
flows’ goodput, at various loads.

is greatly shorter than HCF or OQ’s. The median of CQRD’s
FCT is ~35% shorter than other schemes at all the loads. Also,
the 99th percentile of CQRD’s FCT is still ~5-10% better. As
the load grows higher (e.g >40%), more and more concurrent
flows come into the switch and flow interference becomes
severe. In this situation, it gets harder to provide good flow
separation and the performance of these three schemes tends to
get similar at the tail. However, CQRD still performs the best
at almost all the percentiles as we can see in Fig. 6. This is
because that there are several giant flows with sizes of more
than 1IMB among the 1200 generated flows. In OQ switch,
they occupy most of the buffer resource and lead to packets
of many other short flows dropped, which greatly increase the
overall FCT. Although HCF sets two separate queues at each
output and tries to fairly serve all the flows using hash and
credit schemes, it does not provide enough buffer separation
for different flows. Many flows are output contending but not
path contending, and in HCF they still have to contend for
the same buffer resource. This results in the packet losses for
short flows that are output contending but not path contending

with giant flows, which is avoided in CQRD.

As for flows larger than 100KB, CQRD has almost the
same overall performance (i.e., goodput) as HCF and OQ (the
right half of Fig. 6). These results show that the small size
of separated buffer in CQRD will not significantly impair the
large flows’ goodput.

So far, we have shown that the overall performance of
all short flows in CQRD greatly outperforms the other two
approaches, at the cost of only a minor goodput decrease
of very few large flows. This is because CQRD alleviates
the performance degradation of the flows interfered by a few
giant flows. As Fig. 4(a) shows, although less than 3% of all
flows are giant flows, they interfere with more than 50% of
all flows. And most of the interfered flows are in different
switch paths with the giant flows. CQRD uses separated
buffers and random-drop schemes respectively, to guarantee
the performance of those interfered flows having the same
outputs or paths with giant flows. We now investigate all the
flows (including giant flows) interfered by giant flows and
show how CQRD improves their performance. Those flows
which are not interfered by giant flows perform well and
similarly in all the three schemes, so we omit the results here
due to page limit.

In Fig. 7 we show the average and 20th to 99th percentile
FCT of short flows and goodput of large flows which are
interfered by giant flows, at a typical moderate load. We have
also done these simulations at other loads from 10% to 80%
and the comparison results are similar. We only present the
results at typical moderate load (10%) here due to page limit.

As Fig. 7(a) shows, for all interfered short flows, FCT in
CQRD is about 27% to 44% lower than both HCF and OQ
switches. On the other hand, the goodput of all interfered large
flows is only a little lower than the other two approaches. For
example, the 99th percentile in CQRD is only 7% lower than
HCF’s. These results show that CQRD is able to deal with
flow interference much better than the other two approaches.

Recall that, as discussed in Section IV, CQ provides 1)
complete separation for output contending (excluding those
path contending) flows, by using separated buffers and RR
scheduling, and 2) interference alleviation for path contending
Sflows by using random-drop when queue is full. We now show
how well CQRD performs for these two types of flows.

Fig. 7(b) shows the results for flows output contending (but
not path contending) with giant flows. CQRD greatly exceeds
others’ performance for these flows just as we expect. These
flows contribute to the majority of all interfered flows as
shown in Fig. 4(a), therefore, their performance dominates
the performance of all interfered flows. As for flows path
contending with giant flows, CQRD successfully reduces the
FCT of short flows significantly (left part of Fig. 7(c)), by
random-drop scheme. However, due to separated allocation
manner, each crosspoint buffer in CQRD has 1/N size of
0Q’s. When small and large flows in the same switch path con-
tend for buffer, their packet loss rate are roughly proportional
to their flow sizes, thanks to small buffer size and random-
drop. This increases the chance of small flows to be stored
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Fig. 7. Experiment 1: Average and various percentile FCT of all short flows
and goodput of all large flows interfered by the giant flows at moderate load.

in the buffer, but leads to a lower goodput of large flows. As
we can see in Fig. 7(c), the 99th percentile (representing the
flows with highest goodput) of CQRD’s goodput is lower than
that of HCF. However, the average and percentiles from 20th
to 80th goodput of CQRD are similar to HCF. That shows
CQRD successfully alleviates the interference among flows
path contending with giant flows.

C. Experiment 2: Multi-stage DCN Switching Fabric

Setup: In the second experiment, we simulate a two layer
multi-root topology with full bisection bandwidth (see Fig. 8).
This topology is one of the most commonly used topologies
in large-scale DCN[16, 20]. The network consists of 480
end hosts allocated in 24 racks, which are interconnected by
2 aggregation switches and 24 top-of-rack (ToR) switches.
Aggregation switches have SMB memory for packet buffer as
before, and twenty-four 10Gbps ports connected to each ToR
switch. Each ToR switch has less memory with size of 4MB,
and two 10Gbps ports connected with 2 aggregation switches,
and twenty 1Gbps ports connected to 20 hosts respectively.

Aggregation
Switches

ToR
Switches

20 Hosts

20 Hosts 20 Hosts 20 Hosts

Fig. 8. Experiment 2: A multi-stage DCN topology used in simulations

These are typical parameters of ToR switches [21]. The delay
of each link is 2us, which means a ~16us end-to-end RTT
across racks and a ~8us RTT within a rack. We use Equal
Cost Multi-path (ECMP) for network load-balancing, which
is the de facto routing algorithm[22] in modern data centers.
CQRD (HCF, OQ) are used in all switches in the topology
when simulating CQRD (HCF, OQ)’s performance. During the
experiment, 2000 flows are generated according to the work
load described in Section V-A.
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Fig. 9. Experiment 2: Overall FCT of all short flows and goodput of all large
flows at various loads.

Results: First, we show the overall FCT of all short flows
and goodput of all large flows at various loads. As shown in
Fig. 9(a), CQRD has the best FCT performance at various
loads. The average FCT of all short flows in CQRD are
about 10% to 24% lower than HCF and OQ at moderate
(10%), heavy (40%) and extreme (70%) loads. And the 99th
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percentile of CQRD’s FCT is also about 8% to 30% lower
than others at all loads. In addition, Fig. 9(b) shows that, in
CQRD, the average and 99th percentile goodput of all large
flows perform almost the same as in HCF and OQ. These
results show that a DCN built with CQRD switches has a
much better overall performance, only at the cost of a minor
goodput decrease of very small portion large flows. Using
separated buffer and random-drop scheme, CQRD not only
provides flow separation for a single switch environment as
shown in the former subsection, but also performs well in a
multi-stage switch data center network.
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Fig. 10. Experiment 2: Average and various percentile FCT of all short flows
and goodput of all large flows interfered by the giant flows at moderate load.

As shown in Fig. 4(b), giant flows interfere with more
flows in multi-stage DCN than in a single switch. This is
because flows pass longer paths in this topology and more
flows tend to intersect in ToR and aggregation switches. As
load grows higher, flow interference becomes severe and more
flows are affected by the giant flows. Next, we also dive into
the performance of the flows interfered by giant flows. Those
flows which are not interfered by giant flows are omitted
here similar to experiment 1, because they almost have the

same low delay and high goodput. Results at various loads
are similar, so we only present the results at moderate load
here due to page limit.

Fig. 10(a) shows the overall performance of all the inter-
fered flows at moderate load. The average and 99th percentile
FCT in CQRD are 14% and 30% lower than HCF and OQ.
CQRD also has a much lower FCT for all interfered short flows
at other percentiles. On the other hand, the goodput of large
flows in CQRD is almost the same as other methods. This
shows that in data center, for a multi-stage switch network
built by CQRD, the flow interference caused by giant flows
can be significantly alleviated.

We repeat the same simulation as experiment 1, to reveal
the performance of the flows that are output contending with
giant flows, in multi-stage switch DCN environment. As shown
in Fig. 4(b), output but not path contending flows contribute
to about 90% of all interfered flows. Thus, as we can see
in Fig. 10(b), the average and various percentile of FCT and
goodput of these flows are almost the same as those of all
interfered flows. CQRD greatly improves the performance of
these flows by switch path separation.

As for flows path contending with giant flows shown in
Fig. 10(c), CQRD has the best FCT for average and all
percentile except for 99th. As analyzed before, for those flows
unluckily share the same switch path with giant flows, have to
contend for a crosspoint buffer in CQRD. This buffer is much
smaller than output buffer in HCF and OQ. In these situations,
a few unlucky small flows may be dropped by random-drop
schemes. This leads to a higher 99th percentile FCT and lower
20th percentile goodput. However, our random-drop scheme
achieves a better overall performance as shown in Fig. 10(c).
In addition, the flows path contending with giant flows only
contribute to a very small portion of all the interfered flows.
CQRD significantly improves the overall performance of DCN
at the cost of a little portion of these flows. How to handle this
small part of flows more gracefully is interesting and worth
further studying. For example, nowadays the on-chip memory
is cheap in price, thus increasing the buffer size in CQRD is a
feasible approach to greatly improve the 99th-tile performance
of CQRD. Furthermore, we can even employ HCF at each
crosspoint if the buffer size is large enough. However, a more
detailed study on this improvement is beyond the scope of this
paper, and is left as our future work.

VI. CONCLUSION

In this paper, we advocate that modern DCN flow charac-
teristics call for fine-grained queue management in switches.
Along this direction, we propose a switched based solution
called CQRD to address DCN flow interference problem,
without any modification to end hosts or any coordination
among different switches. CQRD is cost-effective, and is more
fine-grained than traditional OQ scheme and current state-of-
arts HCF scheme. It only requires some minor changes to the
buffering and scheduling scheme in DCN switches. We show
through NS2 simulations that, when flow interference happens,
CQRD can improve the flow completion time of short and
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delay-sensitive flows by up to ~ 44%, at the cost of only a
minor goodput decrease of large flows.

We believe fine-grained queue management is a very
promising direction for DCN performance improvement. In
the future, we plan to further investigate its performance under
different scenarios, such as incremental deployment, larger
buffer sizes, and a hybrid approach that combines switch-based
and transport layer ones.
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