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Abstract
TCP latency is critical to the performance of Web services. However, packet loss greatly impairs the TCP performance due

to its poor loss recovery mechanisms. Recent work FUSO addressed this problem by leveraging multi-path diversity for

proactive loss recovery, i.e., using ‘‘good’’ paths to proactively retransmit the potentially lost packet on ‘‘bad’’ paths before

they are retransmitted after duplicate ACKs or timeout. Nevertheless, since it has no clue about which packet is (or will be)

lost, FUSO simply proactively retransmits the oldest unACKed packet whenever there is a chance for proactive loss

recovery. Through analysis and comprehensive experiments, we show that although FUSO behaves well in data center

networks, which it is originally designed for, in the Internet scenario, such simple proactive retransmission of the oldest

unACKed packet is not accurate enough to recover the lost packets, which causes performance penalty. To address the

problem, this paper presents CoFUSO, a Coding-Based Fast Multi-Path Loss Recovery. Different from FUSO, when there

is a chance for proactive loss recovery, CoFUSO generates a coding packet that codes all (or multiple) unACKed packets

together. As such, CoFUSO can always proactively retransmit the ‘‘right’’ lost packet, since the receiver side can decode

the lost packet by combining the coding packet with other received packets. We implement CoFUSO in Linux kernel with

� 2K lines of code. Testbed and simulation results show that, under lossy condition, CoFUSO can greatly improve the

average and 99th percentile flow completion time (FCT) by � 12% and � 59% in the testbed, and up to � 16.9% and

� 54.5% in the simulation, respectively.
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1 Introduction

TCP is the underlying transport protocol of most modern

online Web services [1–3]. Its transmission time is critical

to the Web service performance [1] which greatly affects

the company revenue [2, 4]. However, packet loss has been

shown to be the most significant factor causing poor TCP

performance especially for short TCP flows in Web ser-

vices [1, 5], mainly due to TCP’s ineffective loss recovery

mechanism.

Previous works try to add aggressiveness to TCP thus to

speed up loss recovery [1, 5]. They start proactive

retransmission before packets are detected to be lost

through ordinary duplicate ACKs or retransmission time-

outs (RTO). However, deciding the degree of aggressive-

ness is hard since the network condition and traffic vary

rapidly. Particularly, being too conservative will delay the

loss recovery and the transmission time is still not

improved enough; being too aggressive, however, may

disturb TCP congestion control and impair performance

due to increased congestion.

Our recent work FUSO [6, 7] solved the problem above

by conducting proactive loss recovery using the opportu-

nity when there is spare congestion window (cwnd) and no

new data to send, which adds no aggressiveness to existing

congestion control. By leveraging multi-path diversity that

offers plenty of such opportunities for proactive loss

recovery, i.e., using ‘‘good’’ paths which have spare cwnd

to proactively retransmit potentially lost packets for ‘‘bad’’

paths, FUSO can be both fast and cautious.

Proactive retransmission can speed up loss recovery.

However, as packets are not verified to be lost yet, it is
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challenging for FUSO to predict which unACKed packet is

most likely to be lost. As such, it simply retransmits the

oldest unACKed packet whenever there is an opportunity

to conduct proactive retransmission. Nevertheless, the

oldest unACKed packet is often not the lost packet. Simple

testbed experiments (Fig. 4) show that FUSO typically

(� 50% flows) needs to retransmit 4–16 redundant packets

before it finally hits the right one (which is lost).

Such patterns provide good performance in data center

networks (which FUSO is originally designed for), since it

has plenty of proactive retransmission opportunities due to

high bandwidth and small round-trip-time (RTT). How-

ever, this proactive retransmission does not apply to the

Internet scenario. Specifically, Internet paths (especially to

mobile devices) often have relatively small bandwidth,

which offers very limited chances to conduct proactive

retransmission while obeying congestion control. For

instance, our experiments (Fig. 5) show that, after all data

has been sent out, � 80% Web flows only have spare

windows to send less than 4 packets in 20 ms, and � 60%

Web flows take more than 50 ms (� 1 RTT) to accumulate

enough spare transmission chances to send 4 or more

proactive recovery packets. Therefore, with such limited

opportunities, several miss-retransmissions (e.g., 4� 16)

would greatly weaken and even neutralize the effects of

proactive loss recovery.

In this paper, we aim to address above problem through

Coding-Based Fast Multi-Path Loss Recovery, CoFUSO.

CoFUSO adopts the same multi-path loss recovery manner

and bears the same philosophy of being both fast and

cautious as FUSO. But instead of retransmitting from the

oldest unACKed packet, CoFUSO generates proactive

recovery packets using an erasure code [8]. Specifically,

when there is a chance to conduct proactive retransmission,

CoFUSO will send a coding packet which codes all the

potentially lost packets together. As such, the sender can

always ‘‘retransmit’’ the right packet without accurately

predicting which one is lost, since the receiver can decode

the actually lost packet once it has received other packets.

To control the coding overhead, we devise an algorithm to

dynamically choose the appropriate coding rate according

to the network condition, meanwhile keeping the recovery

efficiency.

The major contributions of this work are summarized as

follows:

– Through targeted testbed experiments and analysis, we

show that FUSO’s proactive retransmission (from the

oldest unACKed packet) is inaccurate and ineffective

for Internet Web services.

– We design a novel coding-based multi-path loss

recovery scheme, which greatly improves the retrans-

mission accuracy of FUSO using erasure code.

– We implement CoFUSO in Linux kernel with 2077

lines of code. Testbed and simulation results show that

CoFUSO can greatly improve the loss recovery perfor-

mance. Particularly, compared to the latest loss recov-

ery scheme, CoFUSO reduces the average flow

completion time (FCT) by � 12% and the 99th

percentile FCT by � 59% in the testbed, and up to

� 16.9% and � 54.5% for the average and 99th

percentile FCT in the simulation, respectively.

2 Related work

The inefficiency of loss recovery is a well known problem

that hurts TCP performance, especially when retransmis-

sion timeout occurs. Previous single-path works add dif-

ferent aggressiveness level to congestion control thus to

speedup loss recovery before timeout. For example,

Reactive recovery [1] transmits one prober after 2RTT to

trigger duplicate ACKs, while Proactive [1] and Rep-

Flow [9] aggressively transmit every duplicated packets or

flow for excessive redundancy. However, there are two

causes of packet loss [6, 7]: congestion and link/router’s

intrinsic character. As such, their fixed aggressiveness can

not adapt to different network conditions. Particularly, a

high aggressiveness degree may worsen congestion in

congested scenario, while a low aggressiveness would

delay the loss recovery for lossy networks such as WiFi.

Our previous work FUSO solves above problem by

utilizing multi-path for loss recovery, and conducts

proactive recovery while strictly following congestion

control. CoFUSO improves the recovery accuracy of FUSO

through coding, instead of simply retransmitting the oldest

unACKed packet. Corrective recovery [1] also uses cod-

ing, but its constant aggressiveness and single-path char-

acter makes it perform much inferiorly than CoFUSO (see

evaluation results before).

There are some previous works that combine coding

techniques to improve TCP performance. TCP-NC [10]

sends some coding packets to the receiver periodically

controlled by a timer, and achieves good results under the

circumstance that the packet loss rate is less than 10%.

Based on TCP-NC, TCP-VON [11] adopts online coding to

keep continuous decoding at the receiver, which reduces

decoding delay. TCP-FNC [12] adds FCWL (Feedback-

based Coding Window Lock) for redundancy compensa-

tion and EFU (Eliminate at Fewer Unseen) for decoding.

All these works are different from our CoFUSO because

they only worked for single-path TCP which didn’t take

advantage of multiple paths. Moreover, their coding algo-

rithms produce fixed redundant data during transmission.

However, CoFUSO works as a loss recovery scheme, only
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generating redundancy when new data have all been sent

out and there are potential loss.

There are works that apply coding to MPTCP. MPC-

TCP [13] implements coding across sub-flows and encodes

at the overall flow level. Different from CoFUSO ’s sub-

flow level coding, this kind of coding does not consider the

difference between the sub-flows, which difficults the use

of ‘‘good’’ paths to help ‘‘bad’’ paths. We have discussed

this with more details in Sect. 4.4. NC-MPTCP [14] uses a

mixture of regular and coding sub-flows. Regular sub-flows

transmit the original data, and coding sub-flows transmit

the coding data which can be decoded by the receiver. It

selects dedicated sub-flows to transmit the coded packet,

which cannot harness the path diversity if the chosen sub-

flows happen to go through a ‘‘bad’’ path. In contrary,

CoFUSO dynamically generates coding packets in each

path according to its condition. Similarly, FMTCP [15]

incorporates fountain code into MPTCP to improve the

throughput and latency over Internet. Data packets in

FMTCP are first encoded into symbols by adding redun-

dancy, and then these encoded symbols are sent through

multiple sub-flows of MPTCP. However, different from

CoFUSO, FMTCP generates constant redundancy, which is

not a loss recovery scheme like CoFUSO that only starts

when guessing there are potentially lost packets while still

obeying congestion control. FMTCP’s redundant symbols

generated through coding consume a constant bandwidth,

which may increase the FCT when congestion happens.

Moreover, to our knowledge, MPTCP-NC and FMTCP

have only simulated their algorithm without building a real

kernel implementation like CoFUSO.

Some recent works also enable multi-path to other

transports such as RDMA [16, 17]. However, they do not

apply coding techniques to improve loss recovery

efficiency.

3 Background and motivation

3.1 FUSO background

FUSO is a fast (proactive) multi-path loss recovery

scheme. Fig. 1 shows the architecture of fast multi-path

loss recovery. It works on multi-path transport where a

TCP flow is divided into multiple sub-flows.1 If there is a

spare cwnd and no more new data delivered from the upper

layer application, FUSO utilizes this transmission oppor-

tunity for proactive recovery. Specifically, FUSO monitors

each path’s loss condition, and proactively/immediately

recover those potentially lost packets on ‘‘bad’’ sub-flows,

by utilizing ‘‘good’’ sub-flows. Proactive recovery packets

are transmitted as normal data packets on the ‘‘good’’ sub-

flows, thus under the congestion control without adding

aggressiveness. Since a packet is still not verified to be lost,

for every chance of proactive recovery, FUSO simply

regards the oldest unACKed packet (not recovered before)

on the worst sub-flow as the one most likely to be lost, and

retransmits it. Algorithm 1 summarizes how fast multi-path

loss recovery works.

Algorithm 1 Proactive multi-path loss recovery.
1: function TRY SEND RECOVERIES( )
2: while BytesInF lightTotal < CWNDTotal and no

new data do
3: res ← SEND A RECOVERY( )
4: if res == NOT SEND then
5: break
1: function SEND A RECOVERY( )
2: FIND WORST SUB-FLOW( )
3: FIND BEST SUB-FLOW( )
4: if no worst or no best sub-flow found then
5: return NOT SEND
6: recovery packet ← GENER-

ATE RECOVERY PACKET( )
7: Send the recovery packet through the best sub-flow
8: BytesInF lightTotal += Sizerecovery packet

FUSO is originally designed for data center networks

(DCN), which has plenty of parallel paths with loss

diversity among them. It has been shown that FUSO can

significantly outperform prior loss recovery mechanisms in

DCN [6, 7].

3.2 Multi-path to access web services

Besides DCN, multi-path environment also exists for

accessing online Web services, and such multiple paths

have large diversity in loss rate. This also offers us a good

opportunity to conduct fast multi-path loss recovery.

Taking mobile devices which contribute to the majority

traffic of modern Web services [18] as an example, they

are often multi-homed to the network (e.g., 4G and WiFi).

Current mainstream mobile devices have been already

equipped with multi-path transport stack [19, 20]. This

further enables them to readily use multiple paths simul-

taneously to access online services.

Loss rates among those paths can be very different. For

example, Fig. 2 shows the loss rate of a 4G and a WiFi

access path measured in our Lab during one day. Our lab

contains about 20� 30 students sitting in a � 30 m2 room.

Those students share campus WiFi through a single wire-

less access point. We use two mobile devices, one using

campus WiFi and one using 4G, to simultaneously Ping

several top websites in China. Results in Fig. 2 show that

while WiFi often has high loss rate (up to � 2%) in a dense1 ‘‘Sub-flows’’ and ‘‘paths’’ are interchangeably used in the paper.
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environment (about 20 students working in our lab), 4G

usually behaves very well and only has a very low loss rate

(below 0.4%) in a few rare cases.

3.3 Retransmit the oldest unACKed packet is
not enough

With the multi-path environment as introduced before, it is

natural to use multi-path loss recovery such as FUSO to

accelerate TCP2 transmission time. However, FUSO con-

ducts proactive recovery simply by early retransmitting

from the oldest unACKed packet. This is not accurate

enough to recover the lost packet, which makes FUSO

perform inferiorly for Web services.

We conduct a targeted testbed experiment to show the

effect of such inaccurate proactive retransmission. There

are two paths between our client and server, both having an

RTT of 50 ms, and we manually induce 2% random loss

rate in one path (detailed testbed settings will be introduced

in Sect. 6.1). The client requests the server a certain

amount of data 5000 times. The data size is sampled from

our measurement statistics of one-week real mobile search

responses in Baidu [22] (see Fig. 3 for details).

Figure 4 shows, for those flows in which proactive

recovery has successfully recovered at least one packet, the

amount of extra recovery packets that have been trans-

mitted before FUSO’s proactive loss recovery could hit the

lost packet. In FUSO, about 50% flows need to retransmit

4� 16 redundant recovery packets before they hit the right

lost packet.

Such inaccuracy of proactive recovery leads to signifi-

cant performance penalty. Figure 5 shows that after all data

has been sent out, the amount of spare transmission chan-

ces the flows can have for proactive recovery, within

20 ms, 50 ms, and 100 ms, respectively. � 78% flows

have no more than 4 chances to send proactive recovery

packets within 20 ms. If FUSO fails to retransmit the right

one within these 4 packets, � 60% flows take more than

50 ms (� 1 RTT) to accumulate enough spare transmission

chances to send more than 4 proactive recovery packets.

As shown in Fig. 4, through coding, CoFUSO can

greatly improve the accuracy of proactive recovery. We

will discuss the testbed results of CoFUSO with more

details later in Sect. 6.1.2.

4 CoFUSO design

4.1 Overview

CoFUSO follows the core scheme of FUSO as described in

Sect. 3.1, but differs in the manner of generating proactive

recovery packets, as shown in Fig. 1. Specifically, at the

sender side, when there is an opportunity for proactive

recovery, CoFUSO generates a coding packet from

Fig. 1 Fast multi-path loss recovery: FUSO and CoFUSO

Fig. 2 Loss diversity is large among multiple paths for a typical

mobile device to access Web services

2 For ease of presentation, in this paper, TCP refers to both TCP and

multi-path transport such as MPTCP [21] used for accessing web

services. They have the same basic loss recovery mechanism, i.e.,

through duplicate ACKs and RTOs.
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multiple un-ACKed packets which are suspected as lost.

The receiver will try to decode the lost packets using these

coding packets and complete the data transmission, without

waiting the retransmission of those lost packets by original

loss recovery scheme.

To clarify better, we introduce CoFUSO sender and

receiver design separately. In a CoFUSO connection, the

sender is the end host which sends data, while receiver

sends ACK. Note that both ends are simultaneously the

sender and receiver in a two-way connection.

Algorithm 2 Generating coding packet in CoFUSO.
N : number of current unACKed packets on the worst subflow
Nuc: number of unACKed & uncoded packets on the worst
subflow (init: N)
Kmax: max coding block size (number of packets)
K: size of current coding block (init: 0)
Mmax: max number of parities for one coding block
M : max number of parities for current coding block
i: the next parity sequence (init: 0)
L: estimated loss rate on the worst subflow
1: function GENERATE RECOVERY PACKET( )
2: if i==0 then � A new coding block starts
3: Nuc=Nuc − K
4: K=min(Mmax

L
, Nuc, Kmax)

5: M=K × L

6: if K > 0 then � Can generate coding packet
7: recovery packet ← the ith parity for the K un-

ACKed packets in this coding block
8: i = i + 1 mod M
9: else � Downgrade to FUSO
10: recovery packet ← the next oldest unACKed

packet
return recovery packet

4.2 CoFUSO sender

The CoFUSO sender processing is the same as FUSO, but

uses a different function to generate recovery packets (line

6 in Algorithm 1) whenever there is a chance for proactive

recovery. The left part of Fig. 6 illustrates how CoFUSO

sender generates coding packets for multi-path proactive

loss recovery, and the detailed process is shown in

Algorithm 2.

4.2.1 Coding scheme

CoFUSO uses a version of systematic Reed-Solomon codes

(RS-code) [8] to generate coding packets. RS-code is a

kind of linear grouping cyclic redundancy code, which is

the optimal erasure correction code with the property of

maximum distance separable. Compared with other codes,

it has stronger error-correcting capability without the

problem of error layer and can recover more data with less

redundancy. Specifically, we find the worst sub-flow that is

most likely to have packets dropped, and generate M

coding packets (also called parities) for K unACKed

packets (called a coding block) (line 7 in Algorithm 2).

Theses M parities can be used to recover up to M original

packets. In theory, M can be arbitrarily large to recover

arbitrary number of lost packets. However, in practice, the

decoding complexity increases with OðM2Þ. Also, K should

be small thus to minimize the memory consumption on the

receiver side to buffer packets for decoding. Since M

dominates the decoding time, M is set with a upper bound

of Mmax considering both the computation overhead and the

network RTT. Specifically, Mmax is set to make the

decoding time smaller than 1/4 RTT (not shown in

Fig. 3 Flow size distribution measured from one-week mobile search

responses in Baidu [22]

Fig. 4 The number of extra recovery packets transmitted before

hitting the lost packet

Fig. 5 Spare transmission chances within certain time period (20ms,

50ms, 100ms) to conduct proactive recovery
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Algorithm 2), in order to be faster than simple retrans-

mission.3 Similarly, K is set with an upper bound of Kmax

considering the memory resource on the receiver side,4

which can be typically very large thanks to the richness of

host memory.

4.2.2 Dynamic coding rate

To further minimize the computation and memory over-

head, we dynamically select appropriate coding rate (M

and K) according to the network condition, as shown in line

3� 5 of Algorithm 2. Specifically, for each coding block,

K is set to the min of Mmax

L , Nuc, and Kmax, where Nuc denotes

the number of unACKed packets on the worst sub-flow

which are also uncoded before, so we may need to recover

them for potential loss. L is the estimation of the worst sub-

flow’s current loss rate (discussed in Sect. 4.2.4). There-

fore, with high probability, Mmax packets will get lost

among Mmax

L packets (Mmax

L � L ¼ Mmax). As such, consider-

ing at most Mmax parities can be generated, they are typi-

cally enough to recover the Mmax lost packets in Mmax

L

original packets, which is the desired coding block size. To

reduce overhead, the parity parameter M for a coding block

can be decreased to smaller than Mmax, if there is not

enough unACKed original packets left (line 5).

4.2.3 Fully utilizing transmission opportunity

In practice, Mmax is usually small due to computation

overhead. For instance, we set Mmax=1 in our testbed to

minimize the coding overhead (details in Sect. 5). As such,

there is typically still spare cwnd left when parities have

been generated for all the unACKed packets. As such,

CoFUSO leverages such opportunity to conduct further

proactive recovery. Specifically, if there are further trans-

mission opportunities, CoFUSO will downgrade to FUSO

and retransmit the currently oldest unACKed packet on the

worst sub-flow (line 9–10). Note that an un-ACKed packet

will be sent at most once by the proactive loss recovery

scheme and the parities are neglected, thus to avoid adding

too much unnecessary traffic to the network.

4.2.4 Path condition

CoFUSO needs to monitor path condition for the following

two reasons: First, CoFUSO sender needs to monitor the

loss rate of each path thus to select the appropriate coding

rate (see Sect. 4.2.2). We estimate the loss rate L of a sub-

flow as the same in FUSO. Specifically,

L ¼ a1lossrateoverall þ b1lossratelast, which is the weighted

sum of the overall packet loss rate lossrateoverall and the

most recent packet loss rate lossratelast. lossrateoverall is

calculated as the ratio of total retransmitted packets to the

total transmitted packets, and lossratelast is calculated as

the ratio of one to the number of transmitted packets from

(including) the last retransmission, which is updated every

time CoFUSO detects a proactive recovery opportunity.

Second, since Internet paths may differ a lot in terms of

delay, different from FUSO, CoFUSO also considers RTT

when selecting worst and best sub-flows for proactive

recovery (line 2� 3 in function SEND_A_RECOVERY in

Algorithm 1). Specifically, we normalize the loss rate and

RTT across all sub-flows, and consider the weighted sum

of both normalized loss rate and RTT (i.e., a2Lþ b2RTT)

as the metric to select the worst and best sub-flows.

Fig. 6 The process of encoding and decoding in CoFUSO: an example

3 Encoding is quick in RS-code so we mainly consider decoding

time.
4 RS-code uses online encoding which requires no extra buffer at the

sender side.
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4.3 CoFUSO receiver

In multi-path transport protocol such as MPTCP, the

receiver has a data-level receive buffer and each sub-flow

has a virtual receive buffer that is mapped to the data-level

receive buffer [21, 23]. As shown in the right part of Fig. 6,

in CoFUSO receiver, we design a set of extra buffers for

each sub-flow to decode packets, i.e., (1) a packet buffer to

store original packets and (2) a parity buffer to store

parities.

Since decoding requires a combination of data packets

and parities, after receiving in-order data packets, CoFUSO

will first deliver them to data-level receive buffer, and also

copy them into the sub-flow packet buffer for potential

decoding. Each packet is inserted into the buffer position

based on its sequence number. Once the number of

received data packets and parities equals the coding block

size, CoFUSO receiver will decode the missing packets and

deliver them to the data-level receive buffer. CoFUSO then

clears the packets and parities belonging to current coding

block in the packet buffer and parity buffer.

The packet buffer is a circular buffer with maximum

size of Kmax. This ensures that CoFUSO receiver has

enough buffer space to decode the largest coding block.

Packets with sequence that exceeds the buffer limit will

wipe out the packets ahead to make space in the buffer.

Correspondingly, the parity buffer has a maximum size of

Mmax. Parities are stored into the corresponding sub-flow’s

parity buffer sequentially according to their coding block

sequences and then their sequences within a block.

4.4 Discussion

We discuss a few design points here.

Coding/Decoding at sub-flow level We currently choose

coding/decoding packets at sub-flow level instead of flow

level. Specifically, it is easy to use the metric introduced in

Sect. 4.2.4 to find a sub-flow that is likely to drop packets,

and conduct proactive recovery for it. On the contrary, it is

not easy to identify which packet has higher probability to

be lost at flow level.

Strictly following congestion control All proactive

recovery packets transmitted on the good sub-flow (both

coding and retransmission) are regarded as normal packets

under congestion control. Moreover, packet recovery

works above the bad sub-flows, thus will not generate

ACKs in the bad sub-flows and not affect their congestion

control. Note that lost packets will also be retransmitted by

the bad sub-flows themselves, however, the flow is pre-

emptively finished without waiting for the ordinary loss

recovery in the bad sub-flows.

Prioritizing new data transmission Same as FUSO,

CoFUSO follows the principle of prioritizing new data

transmission over its proactive loss recovery, thus to avoid

sacrificing throughput to transmit redundant recovery

packets which can be used for data packets. Whenever new

data has been pushed in, CoFUSO will stop generating

subsequent parities even though the parities have not been

all generated for this coding block. CoFUSO may continue

to generate next parities if spare transmission opportunity

comes again (or generate new coding block if last block has

been ACKed).

5 Implementation

We implement CoFUSO in Linux kernel 3.18 with 2077

lines of code based on FUSO [24], which is built on top of

MPTCP’s Linux implementation v0.90 [23]. Next, we will

describe the details of CoFUSO ’s packet format, and how

we implement the CoFUSO sender and receiver. Currently,

we only implement a simple coding for CoFUSO, i.e., only

generate one XOR coding packet for each coding block.

Generating more coding packets would require to integrate

the RS-code implementation within the Linux kernel,

which is beyond the scope of this paper and will be our

future work.

5.1 Packet format

To carry necessary coding information, CoFUSO inserts a

coding header behind the original TCP and MPTCP header,

as shown in Fig. 7. Note that the format of normal data

packets are the same in CoFUSO and in MPTCP. Since

CoFUSO may also use simple proactive retransmission for

unACKed packet (see Sect. 4.2.3), we use a reserved bit

R_or_C in the TCP header to identify whether this

recovery packet is a coding packet (R_or_C=0) or a simple

retransmitted packet (R_or_C=1).

Fig. 7 Format of coding (parity) packets
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The coding header consumes 20 bytes in total. Specifi-

cally, it contains the following fields:

– SF_ID (8 bits): This field identifies which sub-flow is

this coding packet for. Both ends negotiate a consistent

mapping from SF_ID to sub-flow while establishing the

CoFUSO connection.

– S_SN (32 bits) and E_SN (32 bits): These two fields

indicate the start and end sequence number of the data

packets that are coded in this coding block. The

sequence number is sub-flow-level sequence.

– K (8 bits), M (8 bits) and P_Index (8 bits): K indicates

the coding block size, i.e., the number of data packets

that are coded in this coding block. M indicates the max

number of parity packets for this block, and P_Index

shows this parity packet is the Xnd parity in this block.

– L_CODED (32 bits): This field is set with the result of

encoding every data packet’s size in this coding block.

– D_SN (32 bits): This field is set with the result of

encoding every data packet’s data-level sequence

number (DSN) in this coding block.

5.2 CoFUSO sender

As shown in Algorithm 1, for CoFUSO sender, we rewrite

the GENERATE_RECVOERY_PACKET() in FUSO’s

sender to implement our encoding process (Algorithm 2).

Currently, we implement one parity (i.e., XOR) for each

coding block, and set Kmax to 30. a1 is set to 0.05, b1 is set

to 0.95, and a2; b2 are set to 0.5 in testbed.

When generating parity (coding) packet, besides XOR

the data, we also need to XOR two extra information of

each data packet into the parity packet:

– The first is each packet’s data length. Since different

unACKed packets may have different packet length,

some packet’s data may be padded to the maximum

length when calculating the XOR. As such, when

encoding, we XOR all packet’s length and assign the

result to the field L_CODED in the coding header of the

parity. Thus when decoding, we can also know the

actual length of the recovered packet by decoding the

field L_CODED, and remove the padding part in it.

– The second is each packet’s data-level sequence

number (DSN). When encoding, we also XOR all

packet’s DSN and assign the result to the field D_SN in

the coding header of the parity. As such, CoFUSO

receiver can decode the lost packet and directly put it

into the data-level buffer.

There are a few more things that need to be mentioned.

Since the extra coding header consumes 20 bytes, we set

the MSS of data packets to be 20 bytes smaller than the

actual MSS that can be supported by the network MTU. As

such, the parity packet will not be fragmented by the

underlying network hardwares. Furthermore, in our

implementation, we keep the original MPTCP header for

parity packets, thus to maximize the utilization of existing

MPTCP processing logic (e.g., calculating MPTCP

checksum and other various sub-flow-level processing).

Specifically, we simply copy one data packet’s MPTCP

header to the parity packets as a ‘‘dummy’’ MPTCP header,

and ‘‘reinject’’ the packet into the ‘‘good’’ sub-flow’s send

queue as normal data. At the receiver side, we will inter-

cept those parity packets and process it according to the

CoFUSO logic without considering the ‘‘dummy’’ MPTCP

header.

5.3 CoFUSO receiver

As introduced before, CoFUSO receiver allocates two extra

cyclic buffers besides the existing sub-flow receive buffer

for decoding packets. When receiving data packets and

parity packets, the processing logic is as follows:

– A data packet will be processed by the existing MPTCP

logic, e.g., generating ACKs and updating transmission

states in the sub-flow. Then it will be pushed into the

sub-flow receive buffer and then to the data-level

buffer.5 Beyond that, CoFUSO will also copy these data

packets into each sub-flow’s packet buffer for potential

decoding in the future.

– Coded (parity) packets are also processed by the

existing MPTCP logic so the congestion control on

the ‘‘good’’ sub-flow (who transmits them) behaves

correctly. But at the last moment, CoFUSO will

intercept those parity packets without delivering them

to the data-level receive buffer, since their coded data

has no meaning to the application. Instead, CoFUSO

pushes them into corresponding sub-flow’s (which may

be proactively recovered by them) parity buffer for

potential decoding.

When receiving either a parity or data packet, CoFUSO

will check the packet buffer and parity buffer of the cor-

responding sub-flow to see whether there are enough data

and parity packets arrived in a coding block for decoding.

6 Evaluation

We evaluate CoFUSO both in a small testbed and larger-

scale NS2 [25] simulation. Basically, our evaluations aim

to show the following points:

5 Note that we also adopt the receiving side optimization in FUSO to

directly push the sub-flow data packet into the data-level receive

buffer.
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– In the testbed experiments: (1) we use targeted packet-

drop cases to give a concrete concept of how CoFUSO

speeds up the loss recovery (Sect. 6.1.1); (2) we use

empirical random loss and flow sizes sampled from real

traffic to show that CoFUSO can significantly reduce

the tail FCT under realistic conditions (Sect. 6.1.2); (3)

we show that the encoding and decoding process in

CoFUSO incur negligible overhead in normal trans-

mission (Sect. 6.1.3).

– In the simulation experiments: (1) we compare with

various latest loss recovery schemes and show that

CoFUSO performs the best under more complex lossy

conditions (Sect. 6.2.2); (2) we incur concurrent flows

competing the shared links and show CoFUSO also

performs very well under congestion conditions

(Sect. 6.2.3); (3) we use several targeted scenarios to

examine CoFUSO ’s detailed behavior (Sect. 6.2.4).

Next, we will go into the testbed and simulation experi-

ments, respectively.

6.1 Testbed

We build a small testbed as shown in Fig. 8. There are two

hosts connected with a three-port router (the client con-

nected through two links and the server through one). Both

hosts are Linux virtual machine (Ubuntu 16.04.4 with

Linux 3.18.20 kernel, 12 CPU cores and 20 GB memory),

running on two different physical machines (Intel Xeon

CPU E5-2650, 96 GB memory). The router is emulated

using a physical machine (Intel Xeon CPU E5-2620,

64 GB memory) with multiple 1 Gbps NIC ports. We use

Linux tool tc and netem to induce link delay and packet

loss. The basic RTT in our testbed is about 50 ms and

explicit congestion notification (ECN) is not enabled. The

router queue length is set to 5400 KB, that is three band-

width-delay-products (BDP) [26]. The initial cwnd is 10

segments [27] (for multi-path transports each sub-flow has

an initial cwnd of 10 segments).

During the evaluation, the client sends multiple requests

to the server and the server responds with certain amount of

data for each request according to the requested data size.

Each request and response pair is called a flow. Each

MPTCP/FUSO/CoFUSO flow may use the two physical

paths in our testbed (P1 and P2). This scenario emulates a

mobile device accessing a Web server through two access

links.

6.1.1 Targeted packet-drop

First, we manually drop some packets in a flow with certain

size to see how CoFUSO can speedup the loss recovery

through coding, compared to FUSO.

Setup Specifically, we evaluate two sample cases. In

each case, the client requests a flow with 29 packets from

the server. To clearly show the effect of coding recovery,

before our experiments, we generate 1 KB data to warm-up

each connection and wait for an idle time to reset the initial

window, thus to activate all the sub-flows. We enable 3

sub-flows. Therefore, when the flow data has all been sent

out, there will be one spare chance in the initial window for

proactive recovery. Figure 6 illustrates such condition.

In the first case, we manually drop one of the 10 packets

transmitted by the first sub-flow in turn. In order to show

how coding recovery works, we ensure that both CoFUSO

and FUSO always find this sub-flow as the worst sub-flow

for proactive recovery. In the second case, we randomly

drop one of the 29 packets on the three sub-flows, and no

longer control the selection of the worst sub-flows (using

the path selection algorithm described in Sect. 4.2.4).

Results Figure 9(a) and (b) show the FCT under the two

packet-drop cases. As shown in Fig. 9(a), since FUSO

simply retransmits the first un-ACKed packet on the sub-

flow, it only matches the performance of CoFUSO when

the first packet is actually lost. For other packet-drop cases,

FUSO needs another RTT to recovery the lost packet. On

the contrary, CoFUSO can always recover the right lost

packet in the first RTT by encoding and decoding. As such,

for most cases, CoFUSO has about 50% lower FCT than

FUSO.

Figure 9(b) shows the FCT of 10 runs under the second

case, i.e., randomly dropping a packet in the whole flow.

For 70% runs, CoFUSO does not improve the loss recov-

ery. This is because the selection of the worst sub-flow may

be not accurate due to the lack of history loss information

(Sect. 4.2.4). Note that in real scenarios, CoFUSO can

continuously monitor history loss information during

transmission, which gradually improves the accuracy of

path selection (see results for larger flows in Sect. 6.1.2).

For the other 30% runs, where CoFUSO selects the right

sub-flow for proactive recovery, it reduces the FCT by

� 50% compared to FUSO.

6.1.2 Empirical traffic under random lossy condition

Next, we evaluate CoFUSO under more realistic scenarios.

Fig. 8 Testbed topology
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Setup According to our measurement in Sect. 3.2, we

induce 2% random packet loss on path P2 to emulate a

WiFi link, and do not manually induce packet loss on path

P1 to emulate a 4G link. The client generates � 3000

requests to the server, with the requesting data size sam-

pled from the real workload measured in Baidu (Fig. 3).

Flows have no overlap (the next one starts after the former

ends), and each flow uses a separate connection without

warm-up. The random loss only occurs on data packets

from the server to the client. We compare the FCT of using

CoFUSO, FUSO, MPTCP and TCP in this scenario. Note

that the connection setup/disconnect time is not counted in

a flow’s FCT. For TCP, a flow will randomly choose one of

the two paths among P1 and P2 to transmit data. We enable

3 sub-flows for CoFUSO/FUSO/MPTCP, where P1 has two

on it(Mobile devices prefer to use 4G links for Web traffic,

so we set up two sub-flows on P1) and P2 has one.

Results Figure 10(a) shows the CDF of FCT for each

method. Compared with FUSO, MPTCP and TCP, the 99th

percentile FCT of CoFUSO is about 58.8%, 61.3% and

86.3% lower, respectively. Note that TCP has shorter FCT

in the low percentiles because some of the TCP flows have

not traversed the lossy link P2. Furthermore, CoFUSO

reduces the average FCT by � 12%-32% compared to the

other three schemes.

To show the benefit of coding more clearly, we also

compare CoFUSO with FUSO on how many extra recovery

packets have been transmitted before they hit the lost

packet. Figure 4 shows that in CoFUSO about 60% of

flows have recovered a lost packet only by sending 4 or less

recovery packets, which is about 1.6x higher than FUSO

(� 37% flows have recovered packets using � 4 recovery

packets). Figure 10(b) and (c) show the ratio of flows

having lost packets successfully recovered by proactive

recovery packets (The number of flows which successfully

recover data packets divided by the total number of flows)

and the ratio of recovery packets that have successfully

recovered data packets (The number of recovery packets

which successfully recover data packets divided by the

total number of recovery packets), respectively. Since

(a)

(b)

Fig. 9 Flow completion time under targeted packet-drop

(b)

(a)

(c)

Fig. 10 The testbed results under empirical traffic and random lossy

condition

Wireless Networks

123

Author's personal copy



CoFUSO improves the accuracy of proactive recovery, it

has successfully recovered � 18% more flows than FUSO

(Fig. 10b), and � 2.5% more recovery packets are useful,

i.e., having recovered some data packets (Fig. 10c). In

contrary, FUSO misses many chances of proactive recov-

ery due to transmitting the wrong packets, so many of the

lost packets are recovered by the ordinary loss recovery

after receiving duplicate ACKs.

Note that, although in this scenario there are still many

recovery packets in CoFUSO/FUSO that are useless, since

they do not recover any data packet, these redundancies do

not impair the flow FCT since CoFUSO/FUSO prioritize

new data transmission over loss recovery (Sect. 4.4).

Moreover, since CoFUSO/FUSO strictly follow congestion

control, the redundancy will be automatically throttled if

the network is congested. See results under congestion

scenarios in Sect. 6.2.3 for more details.

6.1.3 Processing overhead

Finally, we evaluate the processing overhead of CoFUSO.

Setup We use the same settings as above experiment in

Sect. 6.1.2, except incurring no packet loss on network

links.

Results Figure 11 shows the CDF of FCT both in FUSO

and CoFUSO. Results show that in terms of processing

delay, the encoding/decoding process in CoFUSO almost

incurs no overhead in a 1Gbps-bandwidth and 50ms-RTT

network. This comes from our simple XOR coding

implementation. We also observe no explicit difference on

the CPU utilization for CoFUSO and FUSO, so we omit the

result figure of CPU utilization here.

6.2 Simulation

To evaluate more complex conditions, we build a larger

simulated network as shown in Fig. 12. There are 20 hosts

with 10 (H1–H10) connected to router R1 and 10 (H11–

H20) connected to S10. There are 10 routers in the whole

network, forming multiple paths between hosts H1–H10

and H11–H20. The basic host-to-host RTT is 48ms and

each link’s bandwidth is 300 Mbps. ECN is not enabled.

The router queue length is set to three bandwidth-delay-

products (BDP) [26]. The initial cwnd is 10 segments [27]

(for multi-path transports each sub-flow has an initial cwnd

of 10 segments). We enable 5 sub-flows for CoFUSO/

FUSO/MPTCP. Each sub-flow or single-path flow is ran-

domly hashed on the physical links through equal-cost-

multi-path (ECMP) algorithm [28]. For the coding

parameters in CoFUSO, Kmax is set to unlimited and Mmax

is 3, and a1;b1; a2;b2 are all set to 0.5.

During the evaluation, hosts H11–H20 send flows to

hosts H1–H10, with the flow size sampled from Baidu

workload (Fig. 3). We randomly pick 4 links between

routers R2–R9 and induce random-drop on data packet

through them.

6.2.1 Schemes compared

Besides FUSO and MPTCP, we compare the following

schemes with CoFUSO in our simulation experiments. We

implement all the following schemes in ns-2 [25]

simulator.

Reactive [29] The latest single-path TCP enhancement

scheme using prober to accelerate loss recovery. The sen-

der transmits one more packet after approximately twice

the smoothed RTT when no ACK is received at the end of

the transaction or when the congestion window is full. This

extra packet is a prober to trigger the duplicate ACKs from

the receiver before timeout.

Corrective [1] The latest single-path TCP enhancement

scheme using both a prober and redundancy. It generates a

coded packet for every group of packets sent in a time bin,

and waits for 1/4 RTT to send it out. This coded packet

protects a single packet loss in this group providing ‘‘in-

stant recovery’’, and also acts like a prober as in Reactive.

According to the authors’ recommendation [1], we set the

coding timebin to be 1/4 RTT and the maximum coding

block to be 16.

RepFlow [9] A simple multi-path latency improvement

scheme by proactively transmitting two duplicated flows.

Fig. 11 Processing overhead of CoFUSO: FCT CDF under no lossy

condition

Fig. 12 The basic simulation topology
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We have implemented RepFlow in the application layer

according to [9].

6.2.2 Random loss

First, we evaluate CoFUSO ’s performance under more

complex lossy condition, and compared with multiple latest

loss recovery schemes.

Setup We choose two hosts H1 and H11 under routers

R1 and R10, respectively, and let H11 send flows to H1.

The H11 generates 3000 flows to the server. We incur no

congestion in this scenario, i.e., flows have no overlap (the

next one starts after the former ends). Each flow uses a

separate connection without warm-up. We induce various

random loss rate (5–25%) on the links.

Results Figure 13(a) and (b) show the average and 99th

percentile FCT under various loss rates. Thanks to coding,

compared to FUSO, CoFUSO reduces the average FCT by

� 2.5–16.9%, and the 99th percentile FCT by � 1–54.5%,

under various loss rates.

Benefiting from proactive multi-path loss recovery, both

CoFUSO and FUSO perform significantly better than other

single-path loss recovery mechanisms (Reactive and Cor-

rective). Moreover, CoFUSO and FUSO also perform

much better than RepFlow, because there is fairly large

chance for the two replicated flows in RepFlow to be

hashed to the same lossy link. Despite utilizing multiple

paths, MPTCP performs inferiorly because it does not

conduct proactive loss recovery.

6.2.3 With congestion

Next, we consider scenarios with congestion.

Setup The 10 hosts under R10 (H11–H20) each send 50

flows concurrently to one different host under R1 (H1–

H10), respectively. The flow inter arrival time obeys the

Poisson process. We incur different congestion level by

adjusting the flow interarrival time. Specifically, we vary

the network load from 10% to 60%. The load is the ratio of

the aggregate data generating speed to the whole band-

width of all the sending hosts’ (H11–H20) access links to

the network. Since there is high oversubscription in the

network (10 access links from the host and only 2 links to

the network), these are actually very high loads for the

network. In this experiment, we set the link loss rate to be

10%.

Results Figure 14(a) and (b) show the average and 99th

percentile FCT under different congestion level. Since the

congestion will automatically throttle the chance of

proactive recovery, this makes CoFUSO perform similarly

to FUSO. But CoFUSO still has � 1.5–5% shorter average

FCT than FUSO. The tail performance of CoFUSO and

FUSO are almost the same when the load is high, since

congestion may lead to multiple successive packet losses,

which typically can not be recovered by a few coding

packets.

Schemes such as RepFlow using aggressive loss

recovery have much worse performance when the network

is congested, because the aggressiveness added even

increases the packet loss.

6.2.4 CoFUSO deep dive

Finally, we dive into several design details of CoFUSO,

and evaluate CoFUSO ’s performance with various set-

tings. Specifically, we evaluate CoFUSO with:

1. Dynamic and fixed coding rate

2. Different number of parities

3. Different number of sub-flows

Dynamic and fixed coding rate To demonstrate the

effectiveness of our dynamic coding (Sect. 4.2.2), we

compare our CoFUSO with dynamic coding rate with a

(a)

(b)

Fig. 13 The average and 99th percentile FCT under various loss rates
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version of CoFUSO using fixed coding rate, i.e., generating

fixed number of parities for fixed number of unACKed

packets. Specifically, we compare with various coding

rates including 1%, 2%, 4%, 8%, 16%, 32%. The coding

rate is defined as the ratio of the parity number to the block

size. We examine the average and 99th percentile FCT

under scenarios without congestion and with congestion. In

both conditions, the random loss rate is 15%. The load is

70% in the congestion scenario. Figure 15(a) and (b) show

the results under no-congestion and congestion, respec-

tively. Our dynamic coding rate can well adapt to various

network conditions. On the contrary, neither a high or low

fixed coding rate can offer good performance under both

no-congestion and congestion conditions.

Different number of parities In former simulations, we

set the maximum number of parities generated in a coding

block (Mmax) to 3. Now we change Mmax from 1–6 to

evaluate its impact on CoFUSO ’s performance. We use the

same random loss settings as in Sect. 6.2.2, and set the loss

rate to 15%. Note that we do not incur computation delay

for encoding/decoding in our simulation. Figure 16 shows

the average FCT and 99th percentile FCT using different

Mmax. The average performance are very similar for

different Mmax values, but Mmax=3 gives the best 99th

percentile FCT. Since generating more parities does not

improve the loss recovery performance but increases

computation overhead, we choose Mmax=3 in our simula-

tion experiments and Mmax=1 in the testbed.

Different number of sub-flows Now we evaluate the

impact of the number of sub-flows. Specifically, we use the

same settings in Sect. 6.2.2, and vary the number of sub-

flows in CoFUSO from 2–6. Figure 17(a) and (b) show the

average and 99th percentile FCT under various loss rates. 5

sub-flows perform better than other conditions both in

(a)

(b)

Fig. 14 The average and 99th percentile FCT under congestion

(a)

(b)

Fig. 15 The average FCT and 99th percentile FCT using various

coding rates under both no-congestion and congestion conditions

Fig. 16 The average FCT and 99th percentile FCT using different

number of parities
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average and 99th percentile. On one hand, more sub-flows

give more chances for CoFUSO to avoid lossy links; on the

other hand, too many sub-flows will increase the flow

burstiness due to MPTCP’s congestion control [30]. As

such, we chose 5 in our simulation.

7 Conclusion

Inefficient loss recovery is a well-known problem that

impairs TCP performance especially for short Web flows.

Although FUSO shows a great potential on addressing this

problem by conduct proactive recovery over multi-path in

data center networks, we show through comprehensive

analysis and testbed experiments that, its simple proactive

retransmission is not effective for the Internet scenario.

This paper presents CoFUSO, which improves the recovery

accuracy using erasure codes. We implement CoFUSO in

Linux kernel with � 2K lines of code. Both testbed and

simulation experiments show that through coding,

CoFUSO can further reduce the average and 99th per-

centile FCT of FUSO by up to � 17% and � 59%

respectively.
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