
Achieving Optimal Edge-based Congestion-aware
Load Balancing in Data Center Networks

Weifeng Zhang†, Dongfang Ling†, Yuanrong Zhang†, Pengfei Li† and Guo Chen†§*
†Hunan University, China §Science and Technology on Parallel and Distributed Processing Laboratory (PDL)

Abstract—Load balancing is the key to improve the perfor-
mance of data center networks (DCN). The de facto scheme,
Equal Cost MultiPath (ECMP) is well-known for its inferior
performance due to the coarse-grained and congestion-oblivious
nature. As such, more fine-grained and congestion-aware schemes
recently emerge. However, current network-based schemes re-
quire special modifications to existing switch hardware that
makes them hard to deploy. In addition, current edge-based
schemes can not achieve optimal load balancing performance
due to the lack of accurate in-network congestion information.

We propose EMAN, as the first step to achieve optimal
load balancing in DCN at the edge. Instead of trying to get
the exact network congestion condition (hard to be done at
the edge), EMAN directly distributes outbound traffic from a
sending endhost proportional to bandwidth of each path, to
balance the path utilization. By dynamically updating each paths
available bandwidth using feedback from the receiver, EMAN can
gracefully react to network asymmetries caused by failure and
flow competition. Both testbed and simulation results show that
EMAN can improve the performance by up to 80% (testbed)
compared to ECMP, and 66% (simulation) compared to the
latest edge-based congestion-aware schemes. EMAN has been
implemented as a hot-pluggable Linux kernel module which is
transparent to existing applications and kernel TCP stack.

I. INTRODUCTION

To meet the increasingly stringent performance requirement,
current data center networks (DCN) have been engineered
to provide large bi-section bandwidth with a dense intercon-
nect topology, which comprises many parallel paths between
servers [1]–[4]. In practice, Equal Cost Multi Path (ECMP) [5]
is commonly used to balance traffic among these paths in pro-
duction DCNs [2], [4]. However, it is well-known that ECMP
does not perform well due to its coarse-grained (flow-based)
and congestion-oblivious (static hash) load balancing manner,
which can waste more than 50% network bandwidth [6].
As such, to solve this problem, several works [7]–[10] have
recently emerged proposing more fine-grained congestion-
aware schemes.

While it is relatively easy to find a more fine-grained load
balancing unit (e.g. flowlet [7], [8], flowcell [11] or packet [9],
[10]), it is much more challenging to balance load across
multiple paths based on their dynamic congestion conditions.
Previous works try to solve this problem along two directions:
• Network-based schemes (e.g. [7], [12]) rely on in-

network monitoring to get real-time traffic information on
each switch port. As such, it can quickly distribute traffic

*Corresponding author.
ISBN978-3-903176-28-7 2020 IFIP

according to each path’s current congestion condition.
For example, switches may tag information such as
queue length and port utilization in the packet header,
so the sender can balance traffic accordingly. However,
this requires non-trivial switch hardware changes, which
hinders their deployment.

• More recent works have proposed edge-based schemes
(e.g. [8], [9]), which only require modifications to end-
hosts’ software. However, they have very limited path
condition information thus can only surmise whether a
path is congested or not based on common signals such
as explicit congestion notification (ECN) [13] or round-
trip-time (RTT). However, ECN or RTT signals do not
specify the accurate congestion degree of a path, i.e.,
how much traffic should be decreased/increased thus to
exactly fully utilize this path. As such, current edge-based
schemes just tentatively spread less traffic on a path until
the congestion signals disappear, which makes their load
balancing decisions inaccurate.

Thus from a philosophical standpoint, it is worth asking:
Can load balancing be done at the edge without modifying
existing network hardware, while still distribute traffic to mul-
tiple paths in an accurate congestion-aware manner? In this
paper, we try to answer this question with a novel edge-based
scheme called EMAN (Edge-based load balancing through
Monitoring Available baNdwidth). EMAN works based on a
simple intuition: Instead of heuristically increasing/decreasing
traffic on a path after detecting congestion on it, EMAN
sender directly distributes traffic proportionally to each path’s
bandwidth. This can balance the utilization of all parallel
paths and reach the maximum throughput.

Although this intuition has been proven to be optimal in
symmetric networks [10], real data center environment is much
more challenging since asymmetric cases often happen [14],
[15]. For example, link bandwidth may downgrade. In order
to balance the utilization, the traffic distribution ratio needs to
be quickly adjusted to the latest path bandwidth. What’s more
challenging, even we can quickly get the latest bandwidth, only
distributing traffic based on path bandwidth but oblivious to
other flows still cannot get us good performance. For example
in Fig. 1(b), if we keep distributing flow F1 and F2 based
on the paths’ bandwidth ratio (i.e., 10:40), these two flows
both can only get 25 Gbps throughput (5 and 20 Gbps on
each path), since link Spine 2↔Leaf 3 will be the bottleneck.
However, the maximum throughput should be 60 Gbps.

To address above challenges, we extend the path bandwidth



Leaf1

Spine1 Spine2

Leaf2

TCP flow

6G

3G

(a) Simple asymmetric case.

Leaf1

Spine1 Spine2

Leaf2 Leaf3

F1 F2

10G

40G
10G

(b) Asymmetric case with flow
competition.

Fig. 1. Various asymmetric cases.

to a wider concept, called available bandwidth. The available
bandwidth is defined as the bandwidth that a flow can get
on a path considering link speed changes and other flows’
competition1. Specifically, the available bandwidth is the
path’s current physical capacity when the flow is the only
one on the path; And it becomes the flow’s fair share to
the path bandwidth when there are other flows competing
with it. Instead of tentatively decreasing sending rate after
seeing congestion signals on a path, whose performance is
very sensitive to the predefined rate-decreasing amount and
the delay of congestion feedback, EMAN directly distributes
traffic proportional to the path available bandwidth. As such,
it loosens the requirement of accurate real-time congestion
degree which is hard to get at the edge.

To dynamically monitor each path’s available bandwidth,
EMAN leverages the collaboration of the receiver and the
existing ECN signals. Particularly, by tagging path ID into
each packet at the sender, the receiver can count the arrived
packets and feedback the real-time transmission rate on each
path back to the sender. Since ECN signals indicates that
a path has currently been saturated (either this flow alone
saturates it or this flow has saturated its fair-share bandwidth),
EMAN can detect a path’s available bandwidth from the
current transmission rate when receiving ECNs.

The major contributions of this work are summarized as
follows:
• We present EMAN, a novel edge-based congestion-aware

load balancing scheme for DCN. By monitoring path
available bandwidth using the information from ECN and
the receiver, EMAN can well balance the network load
at the edge without in-network monitoring.

• We have implemented EMAN as a hot-pluggable Linux
kernel module based on netfilter [18] framework, which
is transparent to applications and system stack. The
implementation incurs little CPU processing overhead
(∼8% of a 2 GHz CPU core).

• Micro and macro benchmarks in simulation and testbed
show that EMAN can improve the performance by up to
80% compared to ECMP, and 66% compared to the latest
edge-based congestion-aware schemes.

II. MOTIVATION AND INSIGHT

Before we go into the detailed design, we first overview the
motivation and design insights of EMAN. Specifically:

1This paper considers load balancing for TCP flows since it contributes the
most majority traffic (if not all) in DCNs [16], [17].

1) We first introduce how existing edge-based load balanc-
ing schemes detect congestion and distribute traffic, and
then analyze why their performance is inferior through a
simple example;

2) Next, we show that load balancing based on path band-
width can well address the problem and achieve superior
performance, but facing practical challenges;

3) Finally, we discuss the possible solutions to above chal-
lenges, and come out with our idea of load balancing
based on available bandwidth at the edge.

A. Why existing edge-based schemes not enough?

Clove [8] and Hermes [9] are two representative edge-
based load balancing schemes. Different from network-based
schemes, they have no in-network information to accurately
detect the congestion degree in real-time. As such, they use
RTT or ECN signals to surmise a path’s congestion condition:
• Clove maintains a weight for each parallel path and dis-

tributes traffic on each path proportionally to its weight.
At the initial state, each path has an equal weight. When
ECN appears on a path which indicates congestion, Clove
will decrease the path’s weight with a certain amount
(Clove paper recommends to decrease by 1/3), so less
traffic will be distributed on this path.

• Hermes combines both ECN and RTT to estimate a path’s
condition. A path is considered to be good when both the
frequency of ECN and RTT are within some threshold.
Packets of a flow will be sent to the same good path
unless the path is detected to be not good, and switched
to another good path2.

We use the following simple experiment to detailedly ana-
lyze Clove and Hermes’ behavior. Consider the case shown
in Fig. 1(a). There are two parallel paths in the network,
where one’s bandwidth is 6 Gbps, and the other’s bandwidth
downgrades to 3 Gbps due to failure. A TCP flow is passing
through these two paths, coming from switch Leaf 1 and
destined to Leaf 2. We assume that the input and output
bandwidth is big enough and the bottleneck of the flow’s
throughput would only appear in the network paths.

We use NS2 [19] to simulate above scenario and evaluate
the performance using Clove and Hermes for load balancing,
respectively (detailed simulation settings in Sec. V). Fig. 2(a)
shows the average flow throughput. We can see that both
Hermes and Clove can only utilize less than 70% of the
whole network capacity (9 Gbps). The detailed reasons of their
inferior performance are as follows:
• Clove initially distributes traffic to these two paths with

a ratio of 1:1 (equal weight). After the TCP flow’s
throughput increases to 6 Gbps (i.e. 3 Gbps for each
path), it will get ECN from the left path. Now the weight
of left path will decay to 2

3 . Later, the traffic will be
distributed to the two paths with a ratio of 2:3 ( 23 :1). The

2More specifically, Hermes will not switch path too aggressively, and only
switch flow with enough bytes left to be sent and the current path has very
low speed, thus to ensure that there will be performance gain considering the
packets out-of-order after switching path.



0

3

6

9

Hermes Clove EMAN Bw-based

Th
ou

gh
pu

t (
G

bp
s)

(a) Throughput.

0

0.5

1

0 30 60 90 120 150

Pa
th

 ra
te

 r
at

io
 

(le
ft

 : 
ri

gh
t)

Time (ms)

(b) Traffic rate ratio on the two paths:
Clove

0

0.5

1

0 30 60 90 120 150

Pa
th

 ra
te

 r
at

io
 

(le
ft

 : 
ri

gh
t)

Time (ms)

...

∞

(c) Traffic rate ratio on the two paths:
Hermes

0

0.5

1

0 30 60 90 120 150

Pa
th

 ra
te

 r
at

io
 

(le
ft

 : 
ri

gh
t)

Time (ms)

(d) Traffic rate ratio on the two paths:
EMAN

Fig. 2. Simple asymmetric case (Fig. 1(a)): The flow throughput and the ratio
of traffic rate on the two paths (left path rate : right path rate).

TCP flow will not decrease its throughput now (Clove
will intercept ECN until it sees ECN on all parallel paths)
and the current rate on the two paths become 2.4 Gbps
and 3.6 Gbps, respectively. Next, when the flow grows
up to 7.5 Gbps (3 Gbps on the left and 4.5 Gbps on the
right), the left path will get ECN again and its weight will
decay to 4

9 . So the rate on the two paths are 2.3 Gbps
and 5.2 Gbps respectively. Following this procedure, the
right path will finally get ECN when the flow throughput
reaches 8.6 Gbps (2.6 Gbps on the left and 6 Gbps on
the right), and the TCP flow starts to decrease its rate.
After that, the weight of these two paths return to 2:3
( 49 : 23 ). Therefore, the traffic ratio among these two paths
will continue varying between 4:9 and 2:3 as shown in
Fig. 2(b) (the pattern starts from time ∼25 ms), but do
not converge to the right ratio of 1:2. This explains why
Clove can not fully utilize these two paths simultaneously.

• Hermes will randomly pick up one path at the initial
status, since no path is estimated as bad path. Next, when
the flow’s throughput grows up and saturates that path,
ECN appears and RTT grows up. As such, this path will
be considered as bad path and traffic will be switched to
the other path. Such greedy path selection scheme can
only choose one path during a period of time. As we
can see in Fig. 2(c), traffic oscillates between these two
paths3. As such, Hermes also can not fully utilize the two
paths simultaneously.

To summarize, although ECN and RTT can reflect conges-
tion, it is hard to tell the exact congestion degree only with
these two signals. Particularly, ECN will only appear on a
path or a path’s RTT will only grow up evidently when the
path is already saturated and congested4. As such, switching

3Note that to show the oscillation clear, we do not enable the parameter R
in Hermes here. We set R to be 40% in all the rest experiments.

4Note that the small variance of RTT may be caused by host stack’s
processing delay, so only evidently increasing of RTT can be considered as
congestion signals.

to a new path only after these signals appear is often too late,
since TCP flows will have already decreased their throughput
reacting to congestion. Moreover, even one like Clove can
deliberately intercept and hide the ECN signals, we do not
know how much load should be switched from this path and
how much load other paths can accept.

B. Balance the parallel paths’ utilization

Actually, it is not difficult to show that if a load balancing
scheme keeps the utilization of all parallel paths always equal,
the TCP flow can get maximal throughput which reaches the
aggregate bandwidth of all paths (assuming the packets out-
of-order has been handled). Apparently, in above simple case
(Fig.1(a)), we can reach this by always distributing traffic
to parallel paths with the proportion of their bandwidth.
The results in Fig. 2(a) (denoted as Bw-based) show that
such traffic distribution manner indeed reaches the optimal
performance.

However, balancing traffic according to path bandwidth
faces practical challenges in real DCN, especially at the edge:
• Path bandwidth would often change, so we need to

get the accurate path bandwidth quickly. Particularly,
failure events are norm rather than exception in large-
scale DCNs [14], [15], [20]. Links can often have speed
degradation or be totally broken due to failures. Waiting
for routing plane to collect global view is always too slow
(e.g., seconds and minutes level [4], [6], [21]).

• A path may be contented by multiple flows between
different pairs of end hosts, so the bandwidth is shared.
It would cause unbalanced load if a flow only distributes
traffic according to the path bandwidth without consider-
ing other flows’ influence (It’s not practical for different
end hosts to get each other’s real-time traffic information
in data-center scale). For example, in Fig. 1(b), if flow F1
and F2 both distribute traffic with ratio of 1:4 (10 G:40
G) but oblivious to each other’s existence, they will both
get ECN back and slow down when the flow speed only
reaches 25 Gbps, since the right path is congested (F1
and F2 each contributes 20 Gbps, respectively).

C. Load balancing based on available bandwidth

Based on above discussion, we can see that a dynamic avail-
able bandwidth probing scheme is necessary. As introduced
before (§I), the available bandwidth is the actual bandwidth a
flow can get on a path, considering the impact of failure and
other flows’ contention. Specifically in our EMAN, a path’s
available bandwidth is detected as its current transmission
rate when receiving ECNs. We now discuss that why splitting
traffic proportionally to the available bandwidth can well
balance the network utilization (experiments in §V):
• It can quickly react to link speed degradation. For ex-

ample in Fig. 1(a), before failure happens (all links are
6 Gbps), the TCP flow distributes traffic equally to the
two paths, and the total throughput is 12 Gbps. The
transmission rate on each path is 6 Gbps. After the left
link downgrades from 6 Gbps to 3 Gbps, the left link



Path Table

End host A (Sender) End host B (Receiver)

EMAN 
shim 
layer

Network 
stack Original 

packets
Tunneled 
packets

Path Feedback Table

EMAN 
shim 
layer

…

Flows

Balance load based on paths’ 
available bandwidth

Network 
stack

(a) Overview.

L2 
header

L3 
header

L4 tunnel 
header

EMAN 
header

Original 
Packet

FB_Path_ID
FB_Path_RRate

0 15 16 31

Probe_ID
Sequence_Number

FB_Probe_ID
Flags

(b) Packet format.
Fig. 3. EMAN architecture.

will soon get ECN back. Since the transmission rate will
also downgrade to the path capacity (i.e. 3 Gbps), then
the sender will update its available bandwidth to 3 Gbps,
and distribute traffic with the right ratio (i.e. 1:2).

• It can also quickly react to flow contention. For example
in Fig. 1(b), the two flows first distribute their traffic
according to the two paths’ capacity, i.e. 10:40. Then the
right path will get ECN when both flows’ speed grow up
to 25 Gbps. Now F1 and F2 each has 5 Gbps on the left
and 20 Gbps on the right. Then both flow update their
available bandwidth of the right path to 20 Gbps, and
distributes later traffic with ratio of 10:20. And later on,
each flow can reach 30 Gbps and simultaneously fully
utilize the two paths (10 Gbps on the left path and 20
Gbps on the right).

Next, we will detailedly introduce how we design EMAN
based on above intuition.

III. EMAN DESIGN

A. Overview

Fig. 3(a) shows the architecture of EMAN. EMAN works
as a transparent shim layer below the end hosts’ existing
network stack. It pro-actively selects path for each packet by
encapsulating/decapsulating packet through overlay tunnels.

Specifically, since current DCN fabric uses ECMP for
underlying multipath routing (hash the 5-tuple), we can pro-
actively select network path at the end hosts by changing the
packets’ 5-tuple. So at the sender side, for path selection,
EMAN encapsulates each packet with a new layer 4 (L4)
tunnel header, and existing techniques (e.g., traceroute [8]
and XPath [22]) are leveraged to enforce explicit routing path
control. EMAN maintains a path table for each pair of commu-
nication ends, tracking each path’s available bandwidth, and
dynamically distributes traffic to parallel paths according to
the table. Path information can be shared among all transport
flows between the same sender and the receiver.

At the receiver side, EMAN decapsulates the tunnel header
and restores the packets coming from different paths into their
original sending order, and then passes them to the host stack.
EMAN receiver maintains a path feedback table for each pair
of communication ends, and feeds paths’ information back to
the sender for calculating the path available bandwidth.

EMAN can handle multiple communication pairs by simply
duplicating the processing scheme for a single pair, so for
clarity of presentation (except where otherwise noted), our
discussion is in the context of a single pair. Note that all
EMAN end hosts are bi-directional, i.e., EMAN shim layer
deals with sending and receiving packets simultaneously. We
only consider TCP traffic in this paper which is the vast
majority in production DCNs [4], [17], [23].

B. Packet format

As Fig. 3(b) shows, EMAN encapsulates a packet into a
transport (L4) tunnel (i.e. UDP or TCP) for path selection.
There are plenty of mature tunnel techniques which are widely
used in DCNs [24], [25], so we omit the introduction of the
tunnel header here.

An EMAN header is also inserted after the L4 tunnel header
which carries necessary information for monitoring each path’s
available bandwidth. We briefly introduce the EMAN header
fields here, and discuss how to use them for making load
balancing decisions later in more details. Note that EMAN
receiver piggybacks path information in data packets back to
the sender, so EMAN header simultaneously contains informa-
tion both set by the sender and receiver. Specifically, EMAN
header contains the following fields.
• Sequence Number (24 bits): This field uniquely iden-

tifies an EMAN packet between a communication pair.
It is set by the sender and incremented by one for each
packet sent out between this pair.

• Flags (8 bits): It contains three flag bits, FBE, P and
FBP. FBE is set by the receiver, feeding back whether
this path has recently encountered ECN signals. P is set
by the sender, indicating whether it is a rate probing
packet. FBP is set by the receiver, indicating whether
this packet contains the feedback probing rate.

• FB Path ID (16 bits) and FB Path RRate (32 bits):
These two fields are set by the receiver to feedback
the current receiving rate on a certain path. FB Path ID
identifies a path, and FB Path RRate is the receiving rate.

• Probe ID (8 bits), FB Probe ID (8 bits): Probe ID is
only valid when P bit is set. This field is set by the sender,
uniquely identifying a probing round. FB Probe ID is
only valid when FBP bit is set. This field is set by the



receiver, feeding back the current probing round and its
receiving rate (in field FB Path RRate).

C. EMAN sender

Path selection: At the sender, EMAN records the current
available bandwidth for each path in the path table, and selects
path for each packet based on it. Specifically, for each packet,
EMAN will select a path in a smooth weighted round-robin
manner using the path’s available bandwidth as its weight.

Detecting transmission rate: As introduced before, to mea-
sure a path’s available bandwidth, EMAN needs to measure
the transmission rate on it. Specifically, whenever EMAN
receiver sees an ECN or probing packet on a path, it starts
to record the number of bytes received from this path for the
successive C ratecalc packets. Then it calculates the actual
packet receiving rate during this time period and feedbacks it
to the sender (in the FB Path ID and FB Path RRate fields),
then stops recording for this path. EMAN relies on instant
ECN marking as described in [23]. Note that an ECN packet
will reset and restart the rate calculating period even when
it has been enabled by a probing packet, since the receiving
rate can reflect the available bandwidth more accurately when
ECN indicates that the path has been fully utilized.

Updating available bandwidth: Then we can dynamically
monitor each path’s available bandwidth based on its current
transmission rate. Specifically, a path’s available bandwidth is
initialized to be its physical capacity, and will be updated in
the following two conditions:

• Seeing ECNs: When ECN appears on a path (i.e., FBE
bit is set in feedback packets), its available bandwidth is
updated to its current transmission rate.

• Proactive probing: The available bandwidth updated by
ECNs may get outdated. For example, a path’s capacity
may restore after failure or the competing flows may
disappear. If we keep distributing traffic to this path using
a relatively low weight, the path may never get ECN
anymore since other paths may always be the traffic
bottleneck. So it is necessary to re-probe the available
bandwidth if ECNs have not be seen on a path for a
relatively long time. Specifically, EMAN will proactively
probe a path after a timeout (denoted as T explore) if
not seeing ECNs. During the probing, the sender will
force C ratecalc successive packets going through the
target path. Each probing round has a unique ID which
is tagged into the header field Probe ID. Then according
to the feedback information (FB Path RRate), the sender
updates its available bandwidth.

D. EMAN receiver

The receiver side is relatively easy. Specifically, when
EMAN receiver receives a packet, it first decapsulates the
packet and updates the path feedback table. The path feedback
table records the ECN and probing signals and the number of
bytes received on each path, which are used to calculate a
path’s receiving rate.

After that, the receiver hands over the packet to the host
network stack if it is in-order, or otherwise, it puts the packet
in the reorder buffer and hands it over to the host stack later
when the former packets have arrived. If former packets have
not arrived for a certain period of time, EMAN will hand over
all packets in the reorder buffer and let the host stack to deal
with the out-of-order packets.

When there is packet sending back from the receiver to
the sender, EMAN will choose one path’s information in the
feedback table in a round-robin manner to feedback (as in [7],
path information that recently changed can also be preferred
as an optimization).

E. Parameter settings

One beautiful point of EMAN is that it has very few hand-
crafted parameters. Specifically, EMAN has only three groups
of parameters: 1) C ratecalc. C ratecalc is suggested to be
just large enough to accurately monitor a path’s transmission
rate, which in our practice is ∼20 packets. 2) T explore,
the timeout length for proactive probing. If path selection
is proportional to all paths’ available bandwidth, ECN will
periodically appear on all paths since the TCP flow can
saturate all parallel paths. So T explore should be set longer
than the time that TCP flows need to increase the throughput to
saturate a path. According to the congestion control behavior,
in the worst case (i.e., there is a single flow and its cwnd
linearly grows from 1), it needs BDP rounds of RTT to saturate
a path (e.g., ∼50 ms for 10 Gbps bandwidth and 250 us RTT).
3) L, the size of reorder buffer, and Treorder, the maximum
time for waiting out-of-order packets in the reorder buffer.
L needs to be just large enough to cover the normal out-of-
order degree across parallel paths, which is typically tens of
MBs in production DCNs (i.e., total buffer size on a network
path [23]). Similarly, Treorder needs to be just large enough to
cover the delay variance across paths, which is typically less
than 10 ms in a 10 Gbps network.

IV. IMPLEMENTATION

We have implemented EMAN as a Linux kernel module
which can be hot-plugged and hot-unplugged when the system
is running. Our implementation has about 2K lines of code.
Specifically, EMAN is built based on netfilter [18] framework.
It intercepts the outbound and inbound packets using netfilter
LOCAL OUT hook (catch packets from L3 to L2 in the stack)
and LOCAL IN hook (from L2 to L3), respectively.

For the outbound packets, we first insert a UDP header (as
the L4 tunnel header) and the EMAN header before the origi-
nal packet. We choose UDP tunnel here since it is very simple
and incurs small header length overhead. Since the original IP
header is tunneled into the payload, we also copy the original
IP header and insert it before the packet as the new IP header
(with the length updated and checksum recalculated). Then,
we fill the newly inserted UDP and EMAN header according
to the path table, and send the packets out. The UDP source
port is used as the identification of a network path, and we



leverage the traceroute [8] to explicitly pre-map the source
ports to physical paths.

For the inbound packets, we just decapuslate the packets
and update the path feedback table, then remove the outer IP
header, UDP tunnel header, and EMAN header. Note that the
ECN signal (if any) is tagged in the outer IP header (TOS
field), so we also copy the ECN field into the original IP
header. Then, EMAN will reorder the out-of-order packets in
a reorder buffer, and hand over the original packets to the
stack.

V. EVALUATION

Our evaluation mainly shows the following three points:
• Detailed simulation experiments show that EMAN can

gracefully handle various asymmetric network conditions.
• Larger simulation experiments using real workload traces

show that EMAN can significantly improve the load
balancing performance in real DCNs.

• Testbed experiments show that our EMAN implementa-
tion has very small system overhead and can well balance
traffic in practice.

A. Simulation experiments

Simulation setup: We implement EMAN as well as the
latest edge-based schemes Clove [8] and Hermes5 [9] on
NS2 [19] simulation platform. We do not compare with
network-based schemes such as CONGA [7], since they re-
quire network hardware modification which are not deploy-
ment friendly. The base RTT in our simulated network is
160 us. Correspondingly, the ECN threshold and the queue
length are set to be 1 BDP and 3 BDPs, respectively [27].
TCP minRTO is 5 ms. Without explicitly specified, we use the
following setups for each method: 1) For EMAN, Cratecalc is
10 packets. Texplore is 50x network base RTT. L is 6Mb and
Treorder is 5ms. 2) For Clove, the path weight decay ratio is
2/3, and the ECN hiding time length is 200x RTTs. 3) For
Hermes, Tecn is 40%. TRTT low and TRTT high are 20 us +
RTT and 2 RTTs, respectively. S and R are 600 KB and 30%.

1) Simple asymmetric case: We evaluate EMAN using the
same simple asymmetric case in Fig. 1(a). Results in Fig. 2
show that EMAN can quickly probe the bandwidth of the
downgraded link and get the right traffic distribution ratio.
Specifically, the traffic ratio is initialized to 1:1. Then the
two paths will get ECN back successively and their available
bandwidth is updated. After that, EMAN converges to the
right traffic ratio of 1:2. As such, EMAN get almost the
same throughput as the optimal bandwidth-based method in
this case, which is ∼40% and ∼90% better than Clove and
Hermes, respectively. Note that the slight ratio churn during
transmission is caused by the small inaccuracy of active
probing and receiving rate measurement.

2) Asymmetric case with flow competition: Next, we
evaluate EMAN using the more complicated asymmetric case

5Our NS2 implementation has largely referred to the NS3 [26] simulation
code provided by the Hermes authors.

Method Clove Hermes EMAN

Thoughput (Gbps) 32.5 39.5 56.7

(a) Throughput.

0
1
2
3
4

0 30 60 90 120 150Pa
th

 ra
te

 ra
tio

 
(le

ft
 : 

rig
ht

)

Time (ms)

Flow1
Flow2

(b) Traffic on the two paths: Clove.

0

0.2

0.4

0 30 60 90 120 150Pa
th

 ra
te

 ra
tio

 
(le

ft
 : 

rig
ht

)

Time (ms)

Flow1
Flow2

∞

(c) Traffic on the two paths: Hermes.

0
0.5

1
1.5

2
2.5

0 30 60 90 120 150

Pa
th

 ra
te

 ra
tio

 
(le

ft
 : 

rig
ht

)

Time (ms)

Flow1
Flow2

(d) Traffic on the two paths: EMAN.

0
20
40
60
80

0 30 60 90 120 150

Th
ro

ug
hp

ut
 

(G
bp

s)

Time (ms)

Flow 1 Flow 2
Total

(e) Flow throughput of EMAN.

Fig. 4. Asymmetric case with flow competition (Fig. 1(b)): The aggregate
throughput of the two flows and each flow’s rate ratio on the two paths (left
path rate : right path rate).

in Fig. 1(b). Fig. 4 shows the results. EMAN almost achieves
the maximum throughput (57.4 out of 60 Gbps), which is
∼46% and ∼97% better than Hermes and Clove, respectively.
EMAN distributes traffic just as described before (§II-C). It
first sends traffic with ratio of 1:1 to the two paths, and
converges to 1:2 after several rounds of ECN update and active
probing. The big spike of traffic ratio at the initial state appears
when one path gets ECN back but the other is still using the
initial pre-configured available bandwidth. Hermes only uses
the 40 Gbps path in this case, since it is considered much better
than the other 10 Gbps link and the current rate is above the
threshold (0.4×40 Gbps) for switching paths. Clove does not
behave well since it always can not decay to the right weight
for both paths. Fig. 4(e) shows the throughput of the two flows
and their aggregate throughput as the time changes in EMAN.

0

10

20

30

40

50

0 30 60 90 120 150 180

Th
ro

ug
hp

ut
(G

bp
s)

Time (ms)

Flow1
Flow2

Flow2 ends
Flow2 
starts

(a) Throughput.

0

10

20

30

40

0 25 50 75 100 125 150 175

Ra
te

 (G
bp

s)

Time (ms)

Left path
Right path

(b) Flow 1’s rate on each path.
Fig. 5. Quick reaction to network dynamics.

3) Quick reaction to network dynamics: We now analyze
how fast EMAN reacts to network dynamics. We use the
same topology as before (Fig. 1(b)). Different from the former
experiments, we let F1 keep running and let F2 join in the
middle and leave the network after a while. Fig. 5 shows the
throughput of the two flows and flow 1’s (F1) rate on each
path as the time grows. We can see that before F2 starts, F1
converges to the maximum throughput (i.e., 50 Gbps). When
F2 joins, F1 quickly adjusts the traffic distribution ratio (from



0
0.2
0.4
0.6
0.8

1

0% 50% 100%

CD
F

Overal network utilization

Fig. 6. CDF of the overall network
utilization under various asymmetric
cases.

0

0.02

0.04

0.06

0.1 0.3 0.5 0.7 0.9

FC
T(
s)

Load

ECMP EMAN
Clove Hermes

Fig. 7. Large-scale simulations: The
average flow completion time.

1:4 to 1:2) and the two flows gradually converge to 30 Gbps.
After F2 leaves, F1 restores its traffic distribution ratio back
to 1:4 and achieves 50 Gbps again in about 30 ms.

4) Overall throughput under various asymmetric cases:
We now enumerate all the link speed downgrade conditions.
Specifically, we consider all the combinations of the total
six links in Fig. 1(b) downgraded to 10Gbps. We evaluate
how EMAN performs under various asymmetric cases. Fig. 6
shows the CDF of the overall network utilization under all
the cases. EMAN achieves more than 85% utilization in more
than 80% cases and achieves 80% utilization even under the
most extreme cases.

5) Larger networks: We simulate a larger leaf-spine net-
work, which have 4 leaf switches each with 16 servers con-
nected through a 10G access link. Each leaf switch has 4 40G
upward links connected with 4 spine switches, respectively.
Two links (one between leaf 2↔spine 1 and the other leaf
2↔spine 2) downgrade to 10 Gbps due to failure. This is the
largest scale for packet-level simulation that can be finished in
acceptable time on our simulation servers. To evaluate the load
balancing performance, we generate permutation traffic from
each server in the left half of the network to the right half, with
flow size sampled from two real data center workloads, web-
search [23] and data-mining [2]. Flow arrives at the Poisson
process and we adjust the flow inter arrival time to generate
different load (from 0.1 to 0.9). Fig. 7 shows the average
FCT under web-search workload for different loads. EMAN
behaves the best at all the loads, improving the FCT by
∼5%-66% compared to Clove and Hermes, and ∼17%-75%
compared to ECMP. We only show web-search results here
due to space limitation, but EMAN also has similar better
performance than Clove and Hermes under symmetric and
asymmetric conditions for data-mining workload, respectively.

B. Testbed experiments

Switch 1

Host 
1.1

Host
1.2

Host
2.1

Host 
2.2

Switch 2

Path 2

Path 1

Fig. 8. Testbed topology.

Testbed setup: We build a small testbed as shown in Fig. 8.
It consists of two switches with two 1 Gbps parallel paths
between them. The two switches are logical switches through
configuring two VRFs within one physical Arista 7050S-64
switch. ECMP is enabled between the two parallel paths.
There are two end hosts behind each switch. Each end host
is a virtual machine (VM) running Ubuntu 18.04.1 system.

Host 1.1/1.2 and 2.1/2.2 are located on two physical machines
(Dell R720, E5-2620 2 GHz CPU, 4-port Intel Gigabit NIC),
respectively. Each host VM is allocated with 1 dedicated CPU
core, and 1 Gbps NIC port connected to the switch. The end-
to-end RTT between hosts behind the two switches are ∼1 ms,
so we configure the ECN marking threshold to be 128 KB on
each path. We set EMAN’s parameters C ratecalc to be 10,
T explore to be 1 s, L to be 500 packets and T reorder
to be 100 ms. We generate TCP traffic using iPerf [28] tools,
with MSS set to be 1350 (reserve space for EMAN headers).
We do not compare Clove [8] and Hermes [9] in our testbed
because their implementation are not available.

1) System overhead: To evaluate the overhead of our
system implementation, we first install EMAN kernel module
on host 1.1 and 2.1, and generate traffic with maximum
speed between them. Compared to original TCP, results show
that EMAN incurs almost zero CPU overhead on the sender
side. EMAN receiver side needs to do more computation
including rate calculation and packet reordering. However, on
the receiver side, EMAN also only incurs ∼8% extra CPU
utilization on a single CPU core (2 GHz) VM. As for the
extra packet header, EMAN incurs ∼3% throughput overhead
compared to original TCP (original TCP ∼930 Mbps and
EMAN ∼900 Mbps)6.

2) Load balancing according to path condition: During
the TCP transmission, we generate a UDP flow with 500 Mbps
constant rate on path 1 to emulate a link failure (last for
10 seconds), and examine whether EMAN can balance load
according to the path condition.
• Without flow competition. We first consider the case that

there is only one flow in the network. We generate one
TCP flow from host 1.1 to 2.1 with maximum speed, and
evaluate the flow throughput before, during, and after the
UDP flow appears on path 1. Fig. 9(a) shows the results.
The flow throughput in EMAN only drops temporarily
when the UDP flow joins, since it encounters ECN. Then
EMAN quickly switches most of the flow traffic to path
2 (1:2 on the two paths) and its throughput recovers. The
flow throughput drops again just before the UDP flow
ends, because the flow grows up to ∼900 Mbps and path
1 encounters ECN again (path 1 is saturated by the UDP
plus TCP flow). We also evaluate the original ECMP’s
performance for comparison. Fig. 9(a) shows that, when
the UDP flow occupies the path bandwidth, the TCP flow
on this path drops to about 200 Mbps (note that TCP flow
cannot fairly compete with a UDP flow).

• With flow competition. We now consider a more com-
plex case that multiple flows competing within the net-
work. Specifically, we generate two TCP flows from
host 1.1/1.2 to 2.1/2.2 with maximum speed, respectively.
Now the network does not only encounter path speed
degradation (caused by outside UDP flow), but also will
be congested by the two flows’ competition. Fig. 9(b) and
Fig. 9(c) show the two flows’ throughput of ECMP and

6This is the application throughput excluding all the packet headers.



0
0.2
0.4
0.6
0.8

1

0 10 20 30 40

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Time (s)

EMAN

ECMP

Path 1 
recoversPath 1 

slowdown

(a) Without flow competition.

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Time (s)

flow 1
flow 2

Path 1 
slowdown

Path 1 
recovers

(b) With flow competition: ECMP.

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Time (s)

flow 1
flow 2

Path 1 
slowdown

Path 1 
recovers

(c) With flow competition: EMAN.
Fig. 9. Testbed experiment results.

EMAN, before, during, and after the UDP flow appears
on path 1. In ECMP, we deliberately force the two flows
going through two different paths. Results show that the
throughput of flow 1 (on path 1) drops to about 200 Mbps
when the UDP flow appears. However, for EMAN, The
two flows evenly utilize the two paths before path 1’s
speed downgrades, and both switch to path 2 when the
UDP flow appears on path 1. As such, both of the flow
can remain about 460 Mbps during path 1’s speed degra-
dation. Note that since TCP can not fairly compete with
UDP, EMAN will actively move traffic to the other path
since path 1 frequently receives ECN signals. As such, the
two flows only have a relatively low throughput on path 1,
having the overall throughput (about 920 Mbps) a slightly
higher than one path’s maximum throughput (about 900
Mbps considering packet header overhead). However, in
real cases when link speed slowdown due to failure
instead of emulated by UDP, EMAN can gracefully utilize
all available paths’ bandwidth, as shown before (§V-A).
We do not evaluate the real link-slowdown since our
switch ports do not support such feature.

VI. DISCUSSION

Per-packet processing overhead. EMAN requires per-
packet processing to achieve fine-grained load balancing,
which may raise concern of processing overhead. However,
our evaluation shows that such overhead is negligible in 1Gbps
environment (§V-B1). Moreover, previous work [9]–[11], [29]
show that with careful implementation, per-packet processing
can well support 10Gbps link speed. As EMAN works as
a shim layer transparent to applications and network stacks,
we can offload EMAN onto NICs. The deployment of high
programmable NICs in DCNs [30]–[32] offers us a great
chance to implement EMAN. We will study it in the future.

Paths with large delay/bandwidth difference. If failures
lead to large delay/bandwidth difference among multiple paths,
EMAN can adaptively trim those worst paths, thus to avoid
using too many buffer spaces at the receiver side to reorder
packets. Since EMAN always monitor each path’s condition
with feedback from the receiving end, it is easy to find out
those extremely bad paths and wipe them out.

VII. RELATED WORK

According to the capability of congestion awareness, load
balancing works for DCNs can be classified as two types.

Static load balancing such as [11], [33], [34] try to split
traffic in very fine-grained unit to balance the network load,
but being oblivious to path congestion. They behave well in

symmetric topology. However, real data center networks often
encounter asymmetry, where their performance are inferior.

Congestion-aware load balancing distribute traffic according
to paths’ dynamic congestion condition, which can be further
classified into two types. 1) Centralized congestion-aware
scheme such as [6], [35], [36] use centralized way to monitor
the whole network condition and then schedule traffic ac-
cordingly. However, the centralized monitoring and scheduling
incurs long latency, which makes them hard to handle the fast
network dynamics. 2) Distributed congestion-aware scheme
such as [10], [12], [37] as well as the aforementioned [7]–[9]
monitor network condition and schedule traffic distributively
in each end host (edge-based) or switch (network-based).
However, as introduced before, network-based works require
non-trivial modifications to network hardware [7], [10], [12],
and edge-based works can not achieve good performance due
to the lack of in-network information [8], [9], [37].

Besides, multi-path transport [38]–[40] is another direction
to balance traffic, which splits a flow to multiple sub-flows.
However, it requires significant changes to transport stack,
which is hard to deploy for public clouds hosting client VMs.

VIII. CONCLUSION

Load balancing for data center networks is an active re-
search area with plenty of ongoing works. However, current
works either require non-trivial network hardware modifica-
tion, or can not achieve good load balancing performance
only with endhost’s software changes. Our proposed EMAN,
an important complement to this area, is just a hot-pluggable
endhost kernel module which is transparent to both applica-
tions and system stacks, meanwhile, can well balance traffic
based on network paths’ available bandwidth. Our testbed and
simulation experiments show that EMAN greatly improves the
performance compared to existing edge-based schemes.

ACKNOWLEDGEMENTS

We thank Zeyu Zhang and Kuan Cheng for helping us to
improve the design and analyze existing works. We thank the
anonymous reviewers of IFIP Networking for their comments.
This research was partially funded by the National Natural
Science Foundation of China (Grants No.6187060280), Ten-
cent Rhino-Bird Open Research Fund, and the Fundamental
Research Funds for the Central Universities.

REFERENCES

[1] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng
Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A
high performance, server-centric network architecture for modular data
centers. In SIGCOMM, 2009.



[2] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. VL2: A scalable and flexible data center network. In
SIGCOMM, 2009.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. In SIGCOMM,
2008.

[4] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hoelzle, Stephen Stuart, and Amin Vahdat. Jupiter
rising: A decade of clos topologies and centralized control in google’s
datacenter network. In SIGCOMM, 2015.

[5] Christian E Hopps. Analysis of an equal-cost multi-path algorithm. RFC
2992, 2000.

[6] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling
for data center networks. In USENIX NSDI, 2010.

[7] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis
Matus, Rong Pan, Navindra Yadav, and George Varghese. CONGA:
Distributed congestion-aware load balancing for datacenters. In SIG-
COMM, 2014.

[8] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman,
Changhoon Kim, and Jennifer Rexford. Clove: Congestion-Aware Load
Balancing at the Virtual Edge. In CoNEXT, 2017.

[9] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowd-
hury. Resilient Datacenter Load Balancing in the Wild. In SIGCOMM,
2017.

[10] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian. DRILL: Micro Load Balancing for Low-latency
Data Center Networks. In SIGCOMM, 2017.

[11] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and
Aditya Akella. Presto: Edge-based load balancing for fast datacenter
networks. In the ACM SIGCOMM 2015 Conference, pages 465–478.
ACM, 2015.

[12] Peng Wang, Hong Xu, Zhixiong Niu, Dongsu Han, and Yongqiang
Xiong. Expeditus: Congestion-aware load balancing in clos data center
networks. In Proceedings of the Seventh ACM Symposium on Cloud
Computing, SoCC ’16, pages 442–455, New York, NY, USA, 2016.
ACM.

[13] Kadangode Ramakrishnan and Sally Floyd. A proposal to add explicit
congestion notification (ECN) to IP. RFC 2481, January 1999.

[14] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding
network failures in data centers: Measurement, analysis, and implica-
tions. In the ACM SIGCOMM 2011 Conference, volume 41, pages
350–361. ACM, 2011.

[15] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-
Wei Lin, and Varugis Kurien. Pingmesh: A large-scale system for
data center network latency measurement and analysis. In the ACM
SIGCOMM 2015 Conference, SIGCOMM ’15, pages 63–74, New York,
NY, USA, 2015. ACM.

[16] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
Understanding data center traffic characteristics. ACM SIGCOMM
Computer Communication Review, 40(1):92–99, 2010.

[17] Glenn Judd. Attaining the promise and avoiding the pitfalls of TCP in
the datacenter. In the USENIX NSDI 2015 Conference, pages 145–157,
Oakland, CA, May 2015. USENIX Association.

[18] The netfilter.org project. https://www.netfilter.org/.
[19] The Network Simulator - ns-2. isi.edu/nsnam/ns/.
[20] Guo Chen, Yuanwei Lu, Yuan Meng, Bojie Li, Kun Tan, Dan Pei, Peng

Cheng, Layong Luo, Yongqiang Xiong, Xiaoliang Wang, et al. Fast and
Cautious: Leveraging Multi-path Diversity for Transport Loss Recovery
in Data Centers. In USENIX Annual Technical Conference, pages 29–42,
2016.

[21] Meg Walraed-Sullivan, Amin Vahdat, and Keith Marzullo. Aspen trees:
Balancing data center fault tolerance, scalability and cost. In the ACM
CoNEXT 2013 Conference, 2013.

[22] Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang Lan, Hao Wang,
Hongze Zhao, and Chuanxiong Guo. Explicit path control in commodity
data centers: Design and applications. In the USENIX NSDI 2015 Con-
ference, pages 15–28, Oakland, CA, May 2015. USENIX Association.

[23] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data Center TCP (DCTCP). In the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, pages 63–74, New York, NY, USA, 2010.
ACM.

[24] M Sridharan, K Duda, I Ganga, A Greenberg, G Lin, M Pearson,
P Thaler, C Tumuluri, N Venkataramiah, and Y Wang. Nvgre: Network
virtualization using generic routing encapsulation. IETF draft, 2011.

[25] Mallik Mahalingam, D Dutt, Kenneth Duda, Puneet Agarwal, Lawrence
Kreeger, T Sridhar, Mike Bursell, and Chris Wright. Vxlan: A frame-
work for overlaying virtualized layer 2 networks over layer 3 networks.
draftmahalingam-dutt-dcops-vxlan-01. txt, 2012.

[26] ns-3. http://www.nsnam.org/.
[27] Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo, Yongqiang Xiong,

and Yongguang Zhang. Tuning ECN for Data Center Networks. In
the ACM CoNEXT 2012 Conference, CoNEXT ’12, pages 25–36, New
York, NY, USA, 2012. ACM.

[28] iPerf - The network bandwidth measurement tool. https://iperf.fr/.
[29] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. Socks-

Direct: Datacenter Sockets can be Fast and Compatible. In SIGCOMM,
2019.

[30] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian
Caulfield, Eric Chung, et al. Azure accelerated networking: SmartNICs
in the public cloud. In 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18), pages 51–66, 2018.

[31] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, et al. A Cloud-Scale Acceleration Archi-
tecture. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pages 1–13. IEEE, 2016.

[32] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable fabric for
accelerating large-scale datacenter services. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on, pages 13–
24. IEEE, 2014.

[33] Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu,
Lihua Yuan, Yixin Zheng, Haitao Wu, Yongqiang Xiong, and Dave
Maltz. Per-packet load-balanced, low-latency routing for clos-based data
center networks. In the ACM CoNEXT 2013 Conference, CoNEXT ’13,
pages 49–60, New York, NY, USA, 2013. ACM.

[34] Abhishek Dixit, Pawan Prakash, Yu Charlie Hu, and Ramana Rao
Kompella. On the impact of packet spraying in data center networks. In
the IEEE INFOCOM 2013 Conference, pages 2130–2138. IEEE, 2013.

[35] Andrew R Curtis, Wonho Kim, and Praveen Yalagandula. Mahout: Low-
overhead datacenter traffic management using end-host-based elephant
detection. In the IEEE INFOCOM 2011 Conference, pages 1629–1637.
IEEE, 2011.

[36] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
MicroTE: Fine grained traffic engineering for data centers. In the ACM
CoNEXT 2011 Conference, page 8. ACM, 2011.

[37] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. Flowtune:
Flowlet Control for Datacenter Networks. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), pages
421–435, Boston, MA, 2017. USENIX Association.

[38] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,
Damon Wischik, and Mark Handley. Improving datacenter performance
and robustness with multipath TCP. In the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, pages 266–277, New York, NY, USA,
2011. ACM.

[39] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, Enhong Chen, and Thomas Moscibroda. Multi-
Path Transport for RDMA in Datacenters. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), Renton,
WA, 2018. USENIX Association.

[40] G. Chen, Y. Lu, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang,
and T. Moscibroda. MP-RDMA: Enabling RDMA With Multi-Path
Transport in Datacenters. IEEE/ACM Transactions on Networking,
27(6):2308–2323, 2019.


	Introduction
	Motivation and Insight
	Why existing edge-based schemes not enough?
	Balance the parallel paths' utilization
	Load balancing based on available bandwidth

	EMAN Design
	Overview
	Packet format
	EMAN sender
	EMAN receiver
	Parameter settings

	Implementation
	Evaluation
	Simulation experiments
	Simple asymmetric case
	Asymmetric case with flow competition
	Quick reaction to network dynamics
	Overall throughput under various asymmetric cases
	Larger networks

	Testbed experiments
	System overhead
	Load balancing according to path condition


	Discussion
	Related Work
	Conclusion
	References

