
1940 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

F2Tree: Rapid Failure Recovery for Routing in
Production Data Center Networks

Guo Chen, Youjian Zhao, Hailiang Xu, Dan Pei, Senior Member, IEEE, and Dan Li, Member, IEEE

Abstract— Failures are not uncommon in production data
center networks (DCNs) nowadays. It takes long time for the DCN
routing to recover from a failure and find new forwarding paths,
significantly impacting realtime and interactive applications at
the upper layer. In this paper, we present a fault-tolerant DCN
solution, called F2Tree, which is readily deployed in existing
DNCs. F2Tree can significantly improve the failure recovery time
only through a small amount of link rewiring and switch con-
figuration changes. Through testbed and emulation experiments,
we show that F2Tree can greatly reduce the routing recovery
time after failure (by 78%) and improve the performance of
upper layer applications when routing failure happens (96% less
deadline-missing requests).

Index Terms— Data center networks, failure recovery, routing.

I. INTRODUCTION

DATA Center Network (DCN), which is the key infrastruc-
ture of almost all the Internet services we rely on today,

scales larger and larger to meet the increasingly stringent
demands of users and service providers. However, as the
number of network equipments (e.g., switches, links) grows,
network failures1 can happen frequently [1], [2]. Furthermore,
recent studies [3], [4] have shown that failure recovery takes
long time in the current production DCNs [5] running dis-
tributed routing protocols such as OSPF [6] and BGP [7]
in multi-rooted tree topologies. The long failure recovery
time significantly hurts interactive real-time services such as
search, web retail and stock trading. For example, according

Manuscript received November 11, 2015; revised July 9, 2016 and
December 11, 2016; accepted January 26, 2017; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor Y. Ganjali. Date of publication
March 13, 2017; date of current version August 16, 2017. This work was
supported in part by the National Key Basic Research Program of China
(973 Program) under Grant 2014CB347800 and Grant 2013CB329105, in
part by the National Key Research and Development Program of China
under Grant 2016YFB1000200, in part by the State Key Program of National
Natural Science of China under Grant 61233007, Grant 61472210, and
Grant 61472214, and in part by the National High Technology Research and
Development Program of China (863 Program) under Grant 2013AA013302.
The preliminary version [33] of this paper was published in the Proceedings
of 35th IEEE International Conference on Distributed Computing Systems
(ICDCS), July 2015.

G. Chen, Y. Zhao, D. Pei, and D. Li are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China
(e-mail: chen-g11@mails.tsinghua.edu.cn; zhaoyoujian@tsinghua.edu.cn;
peidan@tsinghua.edu.cn; tolidan@tsinghua.edu.cn).

H. Xu is with the Department of Computer Science and Technology, Beijing
University of Posts and Telecommunications, Beijing 100876, China. (e-mail:
harlanxu16@gmail.com).

Digital Object Identifier 10.1109/TNET.2017.2672678
1In this paper, network failure is defined to be the failure of network

equipments related to data forwarding, such as links and switch or router
modules. We model all network failures as link failures for simplification.
For example, a whole switch failure is modeled as the failures of all its links.

Fig. 1. 4-port, 3-layer fat tree and F2Tree: One downward link fails.
(a) Fat tree. (b) F2Tree.

to [8], to guarantee user experience, most interactive real-time
services need to meet stringent service deadline considering
both computational and network latencies. This time constraint
between the moment when a query is originated and the
moment when the results have returned and been displayed
can be as short as 300ms. Furthermore, the time constraint
for intra-DC tasks for these services can be even lower than
100ms [8]. This further puts a more stringent requirement on
failure recovery time.

We illustrate the slow routing failure recovery problem
using an actual testbed experiment. Using virtual machines
interconnected in VMware ESXi 5 [9], we have built a
4-port, 3-layer fat tree topology as shown in Fig 1(a).
Switches2 1∼8 (S1∼S8) are top-of-rack (ToR), 9∼16 are
aggregation, and 17∼20 are core switches running OSPF in
Quagga routing software [11], respectively. At time 0ms, node
S at the bottom left starts to send a constant-rate UDP flow to
node D below S7, along the path (S-S1-S9-S17-S15-S7-D).
Then at time 380ms, the link between S15 and S7 is manually
shut down. It takes S15’s failure detection mechanism about
60ms to detect the interface failure. Then the OSPF LSA
messages take very little time to get propagated from S15
to the rest of the network, including S1. S1, however, waits
for OSPF shortest path calculation timer (whose default initial
value is 200ms, but could be much longer in large operational
network [12]) to expire. Then S1 calculates the routing table
using current global link states. It then knows that the current
path has failed and chooses a new path (S1-S10-S19-S16-S7),
and takes another 10ms to update its forwarding table. In total,
S1 takes more than 272ms before it converges to a working
path. Before the convergence, the UDP packets are still
forwarded to the failed link of S15-S7, resulting a 272ms of
connectivity loss from S to D, as shown clearly in Fig. 2(a).

2In the rest of the paper, switches in production DCN refer to layer 3
switches [3], [10] that run routing protocols.

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHEN et al.: F2TREE: RAPID FAILURE RECOVERY FOR ROUTING IN PRODUCTION DCNs 1941

TABLE I

THE COMPARISON OF SCALABILITY AND DEPLOYMENT FOR 3-LAYER DCNs BUILT WITH HOMOGENEOUS SWITCHES OF N PORTS USING DIFFERENT
SOLUTIONS. (ASSUMING EACH DOWNWARD PORT OF ToR SWITCHES CONNECTED WITH ONE NODE.)

Fig. 2. Failure of one downward link between ToR and aggregation switch
in the testbed: Influence to UDP and TCP flows’ throughput. (a) Influence
to UDP throughput (duration of connectivity loss). (b) Influence to TCP
throughput.

While it is normal for distributed routing protocols to have
a second or even minute level convergence time in the
Internet [12], [13], such a long duration of connectivity loss
is apparently unacceptable to a lot of realtime or critical
applications in DCN [8]. In a production DCN, the topology is
much larger than our small testbed and the failure recovery is
more complicated and may be much longer, resulting in path
inflation and temporary loops. Furthermore, the holding timer
for routing protocol calculation will grow to be very large [14]
in a large and unstable network, which leads to a substantial
duration of network disruption.

Our key observation from the above simple testbed experi-
ment is that the long duration of connectivity loss is due to two
reasons. First, in multi-rooted tree topology such as Fig. 1(a), a
downward link (e.g. from S15 to S7) lacks immediate backup
paths. As such, the switch that detects the failure (S15) cannot
find an immediate working rerouting path. Second, distributed
routing protocols such as OSPF take time to learn and react
to the failure and find a new working path.

We define the failure recovery for routing as the process
to recover the connectivity in routing to those affected hosts
(which are still physically connected) after network failures
happen. In fact, above fundamental reasons for the slow
failure recovery in this example are no different from the
slow recovery problems in inter-domain routing (BGP) and
intra-domain routing (OSPF). Therefore, similar to solutions
in BGP and OSPF in the Internet, existing solutions to the

DCN slow failure recovery problem are along the following
two directions: 1) modifying routing protocol and changing
topology [3], and 2) modifying routing protocols and for-
warding planes without having to change topologies [4], [16].
More details can be seen in the last two rows in Table I.
However, because these previous proposals all rely on non-
trivial changes to routing and/or forwarding protocols, it is
very challenging to deploy these approaches in an existing
production DCN.

In this paper, we approach this problem from a different
angle. For an existing production DCN with multi-rooted tree
topology such as fat tree [15] and distributed routing protocol
such as OSPF,3 we aim to accelerate its failure recovery
through only a small amount of link rewiring and switch
configuration changes, without changing any routing and
forwarding protocols or software. Our idea is very intuitive:
increasing the downward link redundancy in fat tree topology
via rewiring links, and configuring the switch such that it can
directly reroute via the newly added backup links when the
switch detects a link failure. Because no protocol or software
changes are needed, this approach is readily deployed in
existing production DCNs, which prior proposals [3], [4], [16]
fail to achieve.

Fig. (1b) shows part of the topology according to our
approach, by only rewiring two links for each aggregation and
core switch. For example, for S15 (S16), we first remove two
links: one of S15 (S16)’s upwards link S15-S18 (S16-S20)
and one of its downward link S15-S8 (S16-S8). Then we use
the newly available ports to add two links between S15 to S16
to form a ring. As a result, when the link between S15 and
S7 fails, the number of immediate backup links (details in §II)
that can be used downward by S15 to reach S7 increased from
0 in fat tree to 2 in our approach. Then we configure two static
routes via the two links in the ring at S15, so that S15 can
quickly switch to one of these backup links (e.g., S15-S16)
after the failure of link S15-S7 is detected, without waiting
for OSPF to converge. Therefore, the packets destined to D
continue to be forwarded to S15, which successfully forwards
the packets along the path S15-S16-S7, greatly shortening
the failure recovery time. Of course, this path redundancy

3We focus on fat tree topology and OSPF for ease of presentation in the
rest of our paper, but the slow failure recovery and our proposed solution is
also applicable to other multi-rooted topologies such as Leaf-Spine [17] and
VL2 [10] and distributed routing protocols such as BGP. More discussions on
this can be found in §VI.

1942 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 3. 6-port, 3-layer F2Tree: Different failure conditions. Fig 3(d) shows an example of address assigning. Hosts connected to each ToR are assigned with
addresses in the same subnet of each ToR. (a) 1 downward link. (b) 2 downward links. (c) 1 downward link & 1 right across link. (d) 2 downward link & 1
right across link.

is achieved at the price of less supported nodes, and the
seemingly decrease of upward link redundancy, which we
discuss in detail later (§III).

We call our above approach F2Tree (standing for Fault-
tolerant Fat Tree). Our contributions in this paper can be
summarized as follows:

• Through detailed testbed experiments and analysis, we
identify the causes of the slow routing recovery problem
in current DCN.

• We propose F2Tree, a readily deployable approach to
accelerate failure recovery time in existing production
DCNs, which only requires rewiring two links and adding
a few backup routes in each switch.

• Through testbed and emulation experiments, we have
shown that F2Tree can greatly reduce the time of failure
recovery by 78% compared to current fat tree. As a result,
F2Tree reduces the ratio of deadline-missing requests of
partition-aggregate applications by more than 96%, under
different failure conditions, compared to original fat tree.

II. F2TREE DESIGN

A. Intuition of F2Tree

ECMP Background: In current fat tree DCNs running dis-
tributed routing protocols as Fig. 1(a) shows, ECMP [18] is
often used as the load balance scheme. With ECMP, a switch
stores the shortest paths with equal costs in its routing table.
Each five-tuple flow is forwarded along a particular (based on
hashing results) path out of the set of the shortest paths. If the
switch detects that the next hop of a path fails, it will just
eliminate this failed path from the set of the shortest paths,
and the forwarding can continue without any control plane
calculation if the set of the remaining shortest paths with same
path length is not empty.

For the ease of presentation, we first define a term of imme-
diate backup link for a certain link L. Once L fails, the switch
S directly connected to L can continue to use this immediate
backup link to forward packets that are originally forwarded
through L to their destinations, only with local information.
Thus, in original fat tree using switch with N ports, there
are N/2-1 immediate backup links for each upward link from
ECMP. However, a switch in original fat tree has no immediate
backup link for its downward links. Therefore, the switch that
detects its downward link failure cannot find an alternative
working route without triggering control plane calculation.
The goal of F2Tree is to add immediate backup links for the
downward link in fat tree, in order to accelerate recovery from
downward failures.

B. Link Rewiring & Switch Configurations

We now introduce how F2Tree achieves above goal through
topology rewiring and configuration changes.

1) Link Rewiring: In original fat tree as shown in Fig. 1(a),
there is no link between switches in the same pod.4 Once a
downward link fails, packets in the detecting switch cannot be
immediately forwarded to neighbors in the same pod, although
the neighbors have working paths to the destination (e.g. S15).
F2Tree attempts to add immediate backup links for downward
links, utilizing these neighbor switches in the same pod who
still can successfully reach the destination.

Specifically, F2Tree reserves a downward and an upward
port of each aggregation and core switch to provide fault-
tolerance as Fig. 3 shows. As we can see in Fig. 3, the topology
of F2Tree is almost the same as fat tree except for a slight
modification within each pod. Each aggregation or core switch

4A pod is defined as a set of switches that directly connected to the same
subtree [3]. E.g., S9 and S10 in Fig. 1(a) are within a pod, connecting to the
same subtree of S1 and S2.

CHEN et al.: F2TREE: RAPID FAILURE RECOVERY FOR ROUTING IN PRODUCTION DCNs 1943

TABLE II

PART OF THE ROUTING TABLE OF S8 IN FIG 3(d). THE LAST TWO
LINES SHOW AN EXAMPLE OF CONFIGURATIONS TO USE IMMEDIATE

BACKUP LINKS FOR DOWNWARD AND UPWARD LINKS IN F2TREE

in F2Tree has two ports connected to their neighbors in the
same pod (the leftmost switch is considered to a neighbor to
the rightmost one). We call the neighbors in the same pod
of F2Tree as across neighbors, and the links/ports between
across neighbors as across links/ports. Thus, the switches in
each pod form a ring through the across links.

Assuming each switch has N ports in F2Tree, these imme-
diate backup links only cost 2 of the N ports of corresponding
switches. The rest N -2 ports of each aggregation or core
switch are half connected to switches in the layers above and
half below, exactly as in fat tree. As such, F2Tree increases
the immediate backup links for each upward and downward
link, from N/2-1 and 0 in original fat tree, to N/2 (including
N/2-2 ECMP links and 2 across links) and 2 respectively,
only at the cost of a negligible bisection bandwidth (discussed
in §III).

2) Configuring Backup Routes: We now introduce how
F2Tree achieves fast reroute5 for downward link failures by
simple switch configurations.

Specifically, to achieve fast reroute, in each aggregation and
core switch, we add one static route to the prefix containing
all hosts in the DCN network (called DCN prefix) with the next
hop being its rightward across neighbor, and one static route
to the prefix just covering the DCN prefix (called covering
prefix) with the next hop being its leftward across neighbor.

To be more specific, we show how to configure S8 in
Fig. 3(d) as an example. The DCN prefix is 10.11.0.0/16,
and the covering prefix is 10.10.0.0/15. S8’s rightward across
neighbor is S9, and its leftward across neighbor is S10. The
last two rows in Table II show the two newly added static
routes in S8’s routing table. These two static routes serve
as backup routes for the routes (through both downward and
upward links) to all the destinations in 10.11.0.0/16. Upon
detecting the link S8-S0 fails, S8 realizes that D is not
reachable via 10.11.0.1. When a new packet destined to D
arrives, S8 looks up its routing table, and finds it can still
reach D with the 3th route (to 10.11.0.0/16), and will directly
forward the packet via the next hop S9, only incurring the
normal FIB lookup time. If S9 is also detected as unreachable,
the 4th route (to 10.10.0.0/15) which has a shorter prefix will
be chosen and S8 will forward packets through S10.

Note that these static routes added by F2Tree are only used
when S8 cannot find any other routes to a specific destination,

5We define fast reroute as the process of routing packets around failures
with only local failure detection information and without control plane
communication and calculation.

because they have shorter prefix than the prefix originally
in OSPF routes. We also deliberately disable OSPF routing
protocols in all the across interfaces in the ring, thus the newly
added across links are only used for backup fast rerouting
which will not be advertised and calculated in the routing
protocol.

One more thing need to mention is that we deliberately
configure the two backup routes with different prefix length.
Because if the two backup routes have the same length, a
temporary loop may occur during fast rerouting while the
downward links of two adjacent switches in the same pod both
fail. For example in Fig. 3(b), while S8 forwarding packets to
S9 after detecting the failure of its downward link, S9 may
forward those packets back to S8 by picking up one of its
two immediate backup links, because its downward link fails
as well. To avoid a potential forwarding loop under this kind
of conditions, we assign a longer prefix for the backup route
through the right across link than the one through the left
across link. With that, during fast rerouting, packets will be
forwarded rightward if the right across link works.

C. Deployment

Next, we discuss how to deploy F2Tree in existing produc-
tion DCNs.

There are two key deployment challenges to update a
running large-scale production DCN into F2Tree: 1) how to
update the whole DCN in an automated manner with as few
manual processes as possible, 2) how to make the update
hitless to the existing network traffic (i.e., keep non-stop
forwarding during the update). To address these challenges,
we have designed the following 5-step deployment scheme of
F2Tree.

1) Planning the topology changes. First, before making
any changes, we need to plan which switch ports &
how they are going to be rewired, and which nodes
& switches are going to be pruned from the network.
The topology change can be conducted in a very simple
and regular manner, by reserving the same two ports
in each switch for constructing the ring structure in
F2Tree. Fig. 1 shows an example of one possible way
to rewire the topology. In each aggregation switch, we
reserve the rightmost downward port for the right across
port and the rightmost upward port for the left across
port. Similarly, in each core switch, we reserve the third
downward port for the right across port and the second
downward port for the left across port. Then, we update
the topology database which records the whole DCN
topology information (including the switch locations,
wiring between the ports, etc.).

2) Migrating services. Next, we need to migrate the ser-
vices running in the nodes that are going to be pruned
in the new F2Tree.

3) Disabling the routing protocol on the across ports. Then,
we disable the routing protocols in the across ports
which are used for redundancy in F2Tree. This is the
key step that ensures the non-stop forwarding during the
update, which will move all the traffic away from those

1944 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

across ports before the real topology changes are made.
Note that this step can be conducted in an automated
manner using a centralized configuration script, which
finds the ID of across ports in each switch by querying
the topology database and then change configurations to
disable routing protocols on these ports.

4) Configuring backup routes. Next, we add two backup
routes in each aggregation and core switch, thus to
utilize the across ports (once the physical rewiring is
done) as backup paths. This step can also be automated
similarly as the step before.

5) Conducting physical topology changes. Finally, after all
the configurations are done, we can make the physical
topology changes meanwhile avoid affecting the run-
ning traffic. Existing DCN topology verification tools
(e.g., [19]) can be used to ensure the correctness of
topology changes.

D. Handling Failures

We now discuss how F2Tree utilizes the two newly added
immediate backup links to deal with different kinds of fail-
ure conditions. Upon upward link failure, F2Tree potentially
performs better than original fat tree, because it offers one
more immediate backup link for each upward link. However,
because upward link failures are already handled reasonably
well using the ECMP scheme in current production DCNs, we
omit the analysis here due to the space limitation. In the rest
of the paper, we focus on the the failures of downward and
across links. The way to handle upward failures can be easily
derived from the way to handle downward failures.

We begin our discussion assuming there is a flow between
two end hosts belonging to different pods of aggregation
switches, such as S and D in Fig. 3. Without failures, this kind
of flow will traverse through the path from bottom to top and
top to bottom, as the red line in Fig. 3 shows. Then, we analyze
the performance of F2Tree, keeping the precondition that the
downward link of a certain switch x (Sx) fails, which is in the
flow’s downward forwarding path. F2Tree handles failures in
the same way regardless of whether Sx is an aggregation or a
core switch. Also, the combination of failures above different
layers will not affect the working scheme of F2Tree (shown
by experiments in §V), because that the fast rerouting scheme
can work locally at a switch for each packet that arrives at this
switch. Therefore, we only present analysis assuming Sx to
be an aggregation switch, and only consider the failures that
happen in the same layer. Conditions where physical path does
not exist are beyond the discussion. The failure conditions can
be summarized as the following four types:

1) The right across link of Sx and the downward link of the
switch right to Sx still work. Fig. 3(a) shows an example
under this condition, assuming Sx = S8. During fast
rerouting, S8 will forward the packets to S9 once the
link failure is detected. Then S9 will forward these
packets to the destination D.

2) Downward links of all the switches in the same pod right
to Sx and left to Sy fail, and Sy has a working downward
link to the destination (at least 1 switch between Sy

and Sx). Meanwhile, across links right to Sx and left
to Sy are working. Fig. 3(b) shows an example of this
condition, with Sx = S8 and Sy = S10. During fast
rerouting in this situation, S8 will forward the packets
to S9, and S9 will relay these packets to S10 because
its downward link fails as well. Finally, packets will be
forwarded to the destination through S10.

3) The right across link of Sx fails, while Sx’s left across
link and the downward link of the switch left to Sx still
works. This condition can be illustrated by the example
in Fig. 3(c), where Sx = S8. During fast rerouting
under this condition, S8 will not forward packets to
S9 because it detects failure of both S0 and S9’s port.
So S8 will choose the second backup route, forwarding
packets to S10 using its left across link.

4) The right across link of a certain switch (Sy) in the same
pod fails, and the downward links of those switches right
to Sx and left to Sy (include Sy) all fail (If Sy = Sx,
the downward link of the switch left to Sx should also
fail). This is a much tougher situation, as shown in the
example in Fig. 3(d) (Sx = S8, Sy = S9). Under this
situation, fast rerouting of F2Tree will fail. Specifically,
packets will be bounced between S8 and S9, before S8
knows the failure of S9’s right across link and downward
link, and calculates a new route. In this situation, the
time for failure recovery will degrade to that in fat tree.

III. COST FOR ROUTING REDUNDANCY

The philosophy of F2Tree is to trade some aggregate
throughput for the increase of path redundancy. In this section,
we analyze the scalability of F2Tree and other prior failure
recovery solutions. We show that unlike other solutions such
as [3], F2Tree only sacrifices a little aggregate throughput,
which can be negligible for a large fat tree topology. Table I
summarizes the analysis results.

We conduct the analysis by assuming to build a 3-layer
non-oversubscribed DCN using homogeneous switches each
with N ports, and then compare the number of nodes (hosts)
supported in different solutions’ topologies. This reflects the
aggregate throughput of a non-oversubscribed network. We
assume that each fabric link (connected between switch ports)
and access link (connected between ToR switch ports and
nodes) has the same capacity. Note that although we only
analyze 3-layer DCN here, our analysis method can easily
be extended to DCN with more layers. We take the two
well-known multi-rooted tree topologies in production DCN,
fat tree [15] and VL2 [10], as the baselines to compare the
scalability and cost with other failure recovery solutions.

For a fat tree DCN [15] with 3-layer switches, each core-
layer switch has all its N ports connected to the pods below.
Thus in total there are N pods in the aggregation layer. Each
aggregation and ToR switch has half of its ports connected
upward and the other half connected downward. Therefore,
there are N/2 ToR switches and (N/2)2 nodes in each pod.
Thus, the total number of nodes in a 3-layer fat tree DCN is

N3

4

CHEN et al.: F2TREE: RAPID FAILURE RECOVERY FOR ROUTING IN PRODUCTION DCNs 1945

Fig. 1(a) shows an example of fat tree with 4-port switches,
supporting 16 nodes in total.

VL2 [10]6 is also a variant of multi-rooted tree topology
(shown later in Fig. 9(b)). It has a much denser interconnection
than fat tree, which improves the fault tolerance. We only
analyze the scalability and cost of VL2 here, and defer the
discussion of its performance in failure recovery and how to
apply F2Tree for VL2 to §VI. In VL2, each core switch has
all its N ports connected to N aggregation switches below in
total. Each aggregation switch has half of its ports connected
to N/2 ToR switches. In a non-oversubscribed VL2, each ToR
switch has N/2 ports connected to N/2 aggregation switches,
and the other N/2 connected to hosts. Thus in VL2, there
are N/2 core switches, N aggregation switches and N ToR
switches. Thus the total number of nodes in a 3-layer VL2
DCN is

N2

2

The left part of Fig. 19(b) shows an example of VL2 with
6-port switches, supporting 18 nodes in total.

Now we analyze the number of nodes supported in F2Tree.
As introduced before in §II, F2Tree has exactly the same
wiring manner with fat tree, except that each aggregation/core
switch in F2Tree reserves two ports connected to their neigh-
bors in the same pod. Thus in F2Tree, the core-layer switches
are connected to N − 2 pods of aggregation switches below
in total, and each pod contains N/2 − 1 ToR switches. The
same as fat tree, each ToR switch has half of its ports
connected downward to the nodes, thus in each pod there are
(N/2− 1)(N/2) nodes. Therefore, the total number of nodes
in a 3-layer F2Tree DCN is

N3

4
− N2 + N

Fig. 1(b) and Fig. 3(a) show two examples of F2Tree
with 4-port and 6-port switches respectively, supporting
4 nodes and 24 nodes in total.

We also analyze the number of nodes supported in other
failure recovery solutions. We only discuss the scalability
of these solutions in this section and leave other details in
§VII. Aspen tree [3] changes the topology of fat tree to
accelerate failure recovery, by making the switches in the
upper layer connect to each pod below with more than one
link. Originally, each upper-layer switch only has one link
connected to each pod below. Aspen tree adds the number of
such links from 1 to f + 1, and calls f as the fault tolerance
value. We analyze the Aspen tree with only f > 0 between
aggregation and core switches, which is recommended by [3]
as a practical trade-off between fault-tolerance, scalability and
cost. In Aspen tree, each core-layer switch is connected to
N/(f + 1) pods of aggregation switches. Each pod has the
same (N/2)2 nodes/hosts in fat tree. Thus, the total number

6Originally, VL2 is designed using high speed fabric links (e.g.10Gbps
switch links) and relatively low speed access links (e.g.1Gbps node/host links).
However, to make the comparison of the scalability and cost under the same
fair condition, we also assume each fabric link and access link with the same
capacity as in fat tree [15].

of nodes in a 3-layer Aspen tree DCN (fault-tolerance between
the core and aggregation layer) is

N3

4(f + 1)

F10 [16] changes the wiring manner of fat tree, but it keeps
the same aggregate throughput as fat tree. DDC [4] makes no
changes to the topology.

We summarize the results above in Table I to show the cost
more clearly. F2Tree can support N3

4 −N2 +N nodes, which
is only N2 −N less than N3

4 nodes in standard fat tree. Only
smaller with a low-order terms, we can see that F2Tree is
able to support approximately the same number of nodes as
fat tree as the network scales larger. For instance, if 128-port
switches are used, F2Tree only supports about 2% nodes less
than original fat tree. However, other fault-tolerant topologies
such as Aspen tree improves the fault-tolerance at the cost of
much more aggregate throughput. Aspen tree supports only

1
f+1 of nodes of original fat tree, where f (always ≥ 1) is the
fault tolerance value between aggregation and core switches.
For example, if adding one fault tolerance degree (i.e.f = 1) in
Aspen tree, it trades off 50% aggregate throughput compared
to original fat tree.

IV. TESTBED IMPLEMENTATION & EXPERIMENT

A. Implementation

Basic Fat Tree: As briefly introduced before (§I), we have
built a basic 4-port, 3-layer fat tree prototype (Fig. 1(a)),
based on virtual machines interconnected in VMware
ESXi 5 [9]. Specifically, all the switches and end-hosts
are virtual machines (VMs), running Ubuntu 14.04.1 LTS.
Each switch VM has 4 1Gbps ports, and each end-host
has 1 1Gbps port. Switches run Qugga OSPF routing soft-
ware [11] (v0.99.22) with ECMP enabled.

Live Migration Scheme to F2Tree: We have implemented
the deployment scheme (introduced in §II-C), to update the
basic fat tree prototype (Fig. 1(a)) into F2Tree (Fig. 1(b)).
Specifically, we first plan the topology changes as Fig. 1(b)
shows. We plan to use the rightmost downward/upward port
in each aggregation switch and the second/third port in each
core switch of the original fat tree for the across ports in
F2Tree. As such, we update the property of those ports as
across ports in the topology database. We develop a bash
script which first disables the OSPF routing protocol on all
the across ports in each aggregation/core switch (by looking
up the topology database), and then adds two backup routes in
each aggregation/core switch. Then after all the configurations
are done, we manually rewire the physical topology from fat
tree (Fig. 1(a)) to F2Tree (Fig. 1(b)). Finally, those switches
and nodes pruned from the network are shutdown.

B. Experiment

Next, we use testbed experiments to evaluate the non-stop
forwarding during migration to F2Tree (§IV-B.1), and the fast
routing recovery to failure after successful migration to F2Tree
(§IV-B.2).

1946 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

1) Non-Stop Forwarding During Migration: Experiment
Setup: We start a UDP flow and a TCP flow respectively from
node S to D during the migration to F2Tree, and examine
whether those traffic are affected. Both UDP and TCP flows
send unlimited data to the destination with maximum rate. All
other settings are set as the default ones in Linux and Quagga.

Results: Results show that no packets are dropped in the
UDP flows and the throughput of TCP flows keeps very steady
during the network updates. We omit the result figures here for
the interest of space. The results are confirmed by running the
experiments for multiple times, and using both our customized
flow generator and iperf [20] to generate traffic.

It is the third step of the deployment scheme (§II-C), i.e.,
disabling the routing protocol on the across ports, which
mainly helps the network keep non-stop forwarding during
updates. Specifically, there are two phases after the routing is
disabled on (to-be) across ports:

• Originally, flows from S to D traverse the path S9-
S18-S15 before the migration. After the routing is just
disabled on the ports between S9-S18 and S18-S15 (3rd

step in §II-C), packets continue to be forwarded through
the old path S9-S18-S15 before routing converges to
the recent changes. Because we only disable the routing
on the ports and these ports are still working physically,
those packets going through S9-S18-S15 are not dropped
and successfully forwarded to S7 and then to D.

• Next when the routing converges, S9 will delete the
routing entry passing through S18 from its routing table.
Then the flows will be switched to the other working
entry S9-S17-S15. Note that switching traffic between
different routing entries only costs a normal routing
lookup time, thus no packets are dropped during the
switching. As such, the flows in S9-S18-S15 are moved
to S9-S17-S15, with non-stop forwarding.

2) Fast Routing Recovery in F2Tree: Experiment Setup:
Next, we generate both a constant-rate UDP and TCP flow
from S to D sending a segment of 1448 bytes data every
100µs. During the data forwarding, we tear down a downward
link between ToR and aggregation switch along the forwarding
path, to evaluate the network performance against failure.
Links are torn down by shutting down certain interface of the
switches. The time for interface failure detection is similar
to the fast failure detection techniques such as BFD [21]
(about 60ms), thus approximating the real DCN. The same
experiments are done in both the original fat tree and F2Tree.

Results: Fig. 2 shows the instantaneous receiving throughput
of both UDP and TCP flows, with a time bin of 20ms. The red
vertical line indicates the time when failure happens. As we
can see, both UDP and TCP flows in F2Tree recover from
failure much faster than original fat tree. In Fig. 2(a), we
can see that the UDP receiving throughput falls to zero for
only about 60ms in F2Tree, while it lasts more than 270ms
in fat tree. This duration of throughput fall comes from the
loss of connectivity, during which packets of the flow fail
to be forwarded to the destination. With no need of control
plane calculation and FIB update, the 60ms of connectivity
loss in F2Tree only comes from the time of failure detection.

As for fat tree, there is a duration of connectivity about 272ms.
This duration mainly consists of a 60ms period of failure
detection, a 200ms period of OSPF default initial shortest path
calculation timer, and a 10ms period of FIB update. Also, the
LSA propagation and the CPU processing delay contribute a
small part.

Next, we discuss how failures impact the TCP flows in
F2Tree and fat tree, respectively. From Fig. 2(b) we can
see, the TCP flow in F2Tree has a significant shorter time
for throughput recovery than that in fat tree. We measure
the time when TCP throughput is lower than 1/2 of the
average throughput before failure happens as the duration of
throughput collapse. While fat tree’s duration of throughput
collapse is 700ms, F2Tree’s is only 220ms. The big gap of
the TCP recovery time between the two solutions is due to the
TCP retransmission timeout (RTO). Specifically, after failure
happens, there are about 60ms and 270ms in F2Tree and fat
tree respectively, when the destination is out of connectivity.
During this time, packets of the TCP flow are all lost and incur
a retransmission after initial timeout of 200ms. In F2Tree,
the retransmitted packets successfully get to the destination,
while in fat tree, the retransmitted packets cannot reach the
destination because the connectivity has not been recovered
yet. Thus, it leads to another retransmission after a doubled
RTO, which increases another 400ms of throughput collapse.
Setting a shorter initial RTO down to hundreds of µs may
successfully reduce the duration of TCP throughput collapse
both in fat tree and F2Tree. However, the TCP throughput
collapse will still last for at least the duration of connectivity
loss.

V. EMULATION EXPERIMENT

In this section, we evaluate the performance of F2Tree in
the emulation environment with a larger scale. First, we study
that how F2Tree performs under different failure conditions
discussed in §II-D. Then, we evaluate F2Tree’s improvement
to upper layer applications using the workload derived from
production DCNs. We also evaluate F2Tree under all-to-all
traffic scenario and different settings of routing calculation
timers.

Emulation Environment: In order to use realistic routing and
forwarding implementation, we choose a feasible software-
based solution, using Quagga [11] software router running
OSPF and Linux network stack as the control and data plane
of our emulated network. We introduce these real implemen-
tations into NS3 [22] through the Direct Code Execution
(DCE) [23] environment. DCE is a framework that provides an
environment to execute, within NS3, existing implementations
of userspace and kernelspace network protocols or applica-
tions. Thus, we can build networks of fat tree and F2Tree
topology within NS3, using switches and nodes implemented
with Quagga and Linux. We implement real TCP and UDP
based applications on Linux, and install them on the nodes in
NS3 to generate different traffic.

ECMP is used in our simulation, just like in existing pro-
duction DCNs. Each link within DCN is set with a bandwidth
of 1Gbps, and a propagation delay of 5µs. A 60ms failure

CHEN et al.: F2TREE: RAPID FAILURE RECOVERY FOR ROUTING IN PRODUCTION DCNs 1947

TABLE III

LABELS THAT REPRESENTS DIFFERENT FAILURE CONDITIONS IN AN 8-PORT 3-LAYER DCN

Fig. 4. Results upon different failure conditions in an 8-port 3-layer DCN.
(a) Duration of connectivity loss. (b) Duration of TCP throughput collapse.

detection delay and 10ms FIB update delay are added to the
emulation, according to the results measured in our testbed.
All the rest of configurations in F2Tree and fat tree are left as
default.

A. Handling Different Failure Conditions

Experiment Setup: We set up a UDP flow and a TCP
flow from the leftmost end host to the rightmost one. During
the data transmission, we inject 7 different types of failure
conditions (shown in Table III) containing links either along
the path, or not on the path but may impact the packet
forwarding. These conditions have covered all the failure con-
ditions discussed in §II-D. C1 and C2 belong to the 1st failure
condition in §II-D, with Sx being aggregation and core switch
respectively. C3 is a combination of C1 and C2, which also
belongs to the 1st condition. C4 and C5 are special cases of
the 2nd failure condition, and C6 belongs to the 3nd condition.
Finally, C7 belongs to the 4th condition in §II-D. We com-
pare the performance of F2Tree and fat tree for C1 to C7.
Note that there is no across links in fat tree, thus for C6
and C7, we only tear down the downward link between ToR
and aggregation switch in fat tree. All the link failures in our
emulation are bidirectional.

Results: Fig. 4 shows the duration of connectivity loss, and
the duration of TCP throughput collapse both in fat tree and
F2Tree. For failure condition C1, F2Tree reduces the duration
of connectivity loss by about 78%, from 270ms to 60ms,
compared to fat tree. As for the TCP flow, there are 220ms
and 610ms of throughput collapse in F2Tree and fat tree,
respectively. All these results are similar to those in the testbed
experiments analyzed before.

Fig. 5 demonstrates the variation of end-to-end delay during
the process of failure recovery under several representative
failure conditions. Except for the 270ms duration of connec-
tivity loss between time 100ms and 370ms, the end-to-end

Fig. 5. Comparison of end-to-end delay during the failure recovery.

packet delay in fat tree under C1 remains to be 100µs, which
consists of propagation, transmission and processing delay.
During the fast rerouting in F2Tree between time 170ms and
270ms in Fig. 5, packets successfully reach the destination
through backup paths with one extra hop. Thus, the end-to-end
is a slightly higher, which is 117µs during this period. After
the control plane converges at 270ms, the end-to-end delay
falls down to 100µs, the same as that in fat tree.

Besides the link above the ToR layer, we also consider the
condition that the link in the higher layer fails (C2) and the
situation that links from both layers fail together (C3). In C2
and C3, fat tree performs almost the same as C1. Compared to
C1, fat tree takes a little bit shorter time for LSA to propagate
to the ToR switch that is connected with the source end host,
which is negligible to the whole failure recovery time. For
C2 and C3, F2Tree performs almost the same as in C1, which
verifies our analysis before. The end-to-end delay performance
is the same as the one in C1, which is omitted in Fig. 5 for
brief.

C4 and C5 are tougher conditions for F2Tree belonging
to the second condition discussed before, with Sy right to
Sx and Sy left to Sx respectively. This could lead to a longer
path while using backup routes. As discussed before, under
C4 and C5, F2Tree has paths of more than one extra hop
during the fast rerouting period. This leads to a slightly longer
end-to-end delay during fast rerouting as shown in Fig. 5.
However, these slightly longer paths during fast rerouting
negligibly affect the upper layer performance, which is verified
by the results in Fig. 4(b).

C6 belongs to the third condition discussed before in §II-D.
Under this condition, F2Tree performs the same as in C1,
except that packets are forwarded through the left across
link during fast rerouting. Furthermore, we evaluate F2Tree
under the extreme condition C7, which belongs to the fourth
condition in §II-D. F2Tree degrades to fat tree under this
condition, which confirms the analysis before.

1948 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 6. Impact to partition-aggregate workload, while experiencing different
number of concurrent failures (CF). (a) Deadline missing ratio (%). (b) CDF
of request completion time.

B. Impact to Partition-Aggregate Workload

Experiment Setup: Next, we evaluate F2Tree and fat tree
under more complicated conditions. We generate failures on
randomly picked links. The time between failures and the
length of lasting time both obey log-normal distribution, which
derives from the measurement results of operational DCNs [1].
We inject a partition-aggregate workload to our DCN
emulation environment, following the convention of prior
works [4], [16]. In this workload, we randomly pick some
end hosts, each of which sends a small TCP single request to
each of 8 other end hosts, and waits for a 2KB response from
each machine. This traffic pattern often exists in front-end data
centers. We measure the completion time of these requests,
which means all the 8 responses are received by the sender,
under 1 and 5 concurrent failure conditions respectively. We
have generated more than 3000 such requests, and 1500
background flows during 600s experiment time. About 40 and
100 link failures are respectively generated in the 1 and 5
concurrent failure conditions, during the experiment time.

Results: Following the convention of the
literatures [4], [24], we use deadline missing ratio as
our main evaluation metric in this section. Fig. 6(a) shows the
ratio of requests that miss the completion deadline (assuming
to be 250ms according to [24]), under two failure conditions
in fat tree and F2Tree, respectively. In fat tree, there are about
0.4% and 1.6% requests, having completion time more than
250ms under 1 and 5 concurrent failure conditions. However
in F2Tree, no request is completed for a time longer than
250ms under 1 concurrent failure, and only about 0.06%
requests are completed after the deadline under 5 concurrent
failures. Compared to fat tree, F2Tree reduces the ratio of
deadline missing requests by 100% and about 96.25% under
these failure condition, respectively.

To be clearer, Fig. 6(b) shows the CDF of requests’ comple-
tion time longer than 100ms, both in fat tree and F2Tree. As
we can see, there are more than 0.4% requests taking longer
than 100ms to complete in fat tree, under the condition with
only 1 concurrent failure. Specifically, there are about 0.05%
requests delayed for about 600ms due to the duration of TCP
throughput collapse as analyzed before. Moreover, among all
the requests in fat tree, there are even more than 0.3% requests
completed after 1s, which is apparently unacceptable for upper
layer applications. Digging into the trace, we find that, due to
the frequent failures, large amount of LSAs are generated. This

Fig. 7. Overall network utilization under all-to-all traffic.

leads to a dramatic growth of OSPF calculation timer up to
about 9s, caused by the exponential backoff scheme [14] to
adjust the hold time in OSPF. Thus, some requests are even
delayed for such a long time by these large timers in fat tree.
In contrast, due to the path redundancy and local rerouting in
F2Tree, packets can be forwarded through immediate backup
links without waiting for control plane communication and
calculation under only 1 concurrent failure, as analyzed before.
As a result, there are only about 0.04% requests completed
for about 200ms in F2Tree, which are delayed by the failure
detection time as stated before, under 1 concurrent failure.

As for a tougher case in which 5 failures occur concurrently,
the ratio of requests with completion time of more than 200ms
increases both in fat tree and F2Tree. However, F2Tree still
performs much better than fat tree, by reducing the ratio of
those requests by 93.5%. Because of the large number of
concurrent failures, the 4th failure condition discussed in §II-D
has occurred in our experiment, which degrades the F2Tree’s
performance down to fat tree, and leads to a 9s completion
time for some requests waiting for large OSPF calculation
timers. However, there are only about 0.03% requests taking
that long time to be completed.

C. All-to-All Traffic

Next we evaluate the overall network utilization under all-
to-all traffic, before failure happens, during failures, and after
recovered from failures, respectively.

Experiment Setup: Starting from time 0s, we generate an
all-to-all permutation traffic [25] with each end-host sending
an unlimited TCP flow to another end-host (in different Agg
pod) with maximum rate. At time 4.5s, we manually tear down
1/8 links between the Core layer switches and the Agg layer
switches. After 1.5s at time 6s, we recover all these failed
links.

Results: Fig. 7 shows the overall network utilization. Each
point in the figure are the average of 20 runs. Before failure
happens, F2Tree and fat tree have almost the same network
utilization of ∼0.54. Due to hash collision in ECMP, the
overall utilization cannot reach 1, which has also been shown
in many previous studies such as [17], [26].

When failure happens at time 4.5s, flows traversing these
failed paths have multiple consecutive packets dropped, which
leads to a 200ms timeout to them. It makes the overall network
utilization in both topologies drop to ∼0.35 from time 4.5s
to 4.7s. Then at time 4.7s, all flows going through those
failed links in the upward direction (denoted as upward flows)
have recovered their throughput, thanks to the quick routing
recovery for upward link failures (§II-A). In F2Tree, for
flows going in the downward direction through those failed
links (denoted as downward flows), their transmission is also
recovered thanks to the fast rerouting scheme. This leads to the

CHEN et al.: F2TREE: RAPID FAILURE RECOVERY FOR ROUTING IN PRODUCTION DCNs 1949

Fig. 8. Different routing calculation timer settings: Duration of connectivity
loss caused by single link failure, and the impact to partition-aggregate
workload when experiencing different number of concurrent failures (CF).
(a) Duration of connectivity loss. (b) Deadline missing ratio (%).

overall network utilization going back to ∼0.49 at time 4.7s.
However, in fat tree, these downward flows’ transmission still
cannot be recovered since the downward routing recovery is
not finished yet. As such, at time 4.7s, the overall utilization
only goes up to ∼0.43. These downward flows encounter
another 400ms timeout. Then at time 5.1s, these downward
flows’ transmission get recovered, and the overall utilization
goes back to ∼0.49.

At time 6s, all failed links are physically recovered. Then
at time 6.07s, upward flows can utilize those recovered links,
after Agg switches detect the link recovery and update their
forwarding tables. At time 6.27s, the whole routing plane con-
verges to the link recovery, and the overall network utilization
is recovered in both topologies.

D. Different Routing Calculation Timer Settings

Now we evaluate the impact of different routing calculation
timer settings on the routing recovery performance of both fat
tree and F2Tree.

Experiment Setup: Besides the default 200ms used in exper-
iments before, here we set smaller initial OSPF calculation
timers from a moderate 100ms to a more aggressive 10ms.
We rerun the experiments in §V-A (condition 1) and §V-B to
see how different timers affect the duration of connectivity loss
caused by single link failure, and the deadline-missing ratio in
partition-aggregate workload when experiencing random and
complex failures.

Results: Fig. 8(a) shows that, for single link failure, a
smaller timer can help fat tree to achieve better routing
recovery time. It is because that, with a smaller timer, the
control plane will sooner calculate the new route to avoid the
failed link. The results show that using an aggressive 10ms
timer can make fat tree (which has no fast rerouting schemes)
have a very similar routing recovery time as F2Tree (which
fast-reroutes with no need to wait control plane calculation).

However, a smaller timer may also make the routing
unstable and more difficult to converge under complex and
relatively frequent failure scenarios, thus even lengthens the
failure recovery time. Same as before (§V-B), we generate
random failure conditions derived from real measurements [1]
and a practical partition-aggregate workload, to see whether a
smaller timer can handle such more realistic scenarios. Results
in Fig. 8(b) show that the deadline-missing requests in fat
tree grows as the initial routing calculation timer decreases.

Fig. 9. F2Tree for other multi-rooted tree topologies. (a) F2Tree for Leaf-
Spine topology. (b) F2Tree for VL2 topology.

It indicates that simply decreasing the timer can not adapt
to complex failure conditions in production DCNs. On the
contrary, F2Tree keeps behaving well under various timer
settings, benefited from the fast rerouting scheme before the
control plane communication and calculation.

VI. F2TREE EXTENSION

In this section, we introduce how F2Tree can be adapted in
other existing DCN environments.

A. Other Multi-Rooted Tree Topologies

Besides fat tree, several other multi-rooted tree topologies
are also used in some existing production DCNs, such as
VL2 [10] topology and two-layer Leaf-Spine [17] topology. In
addition to standard fat tree, F2Tree’s scheme (rewiring links
and adding backup routes) is also applicable to other multi-
rooted tree topologies, helping to reduce failure recovery time.

1) F 2Tree for Other Multi-Rooted Tree Topologies: We use
Fig. 9 as an example to briefly illustrate how to rewire these
topologies according to F2Tree’s scheme, thus to add path
redundancy and reroute locally with proper switch configura-
tions.

F2Tree for Leaf-Spine: Actually, Leaf-Spine [17] is a
special instance of fat tree topology which contains only
two layers, commonly used for small-scale or middle-scale
DCNs. The left part of Fig 9(a) shows an example of a Leaf-
Spine topology. Like fat tree, Leaf-Spine also lacks immediate
backup link for downward links. As the example in Fig 9(a)
shows, if link S9-S6 fails, original Leaf-Spine DCN needs to
propagate failure message and wait control plane calculation
until S1 finds a new path (e.g. S1-S8-S6) to route around
the failure. As the right part of Fig 9(a) shows, it is easy to
apply F2Tree to the Spine layer in Leaf-Spine, using the same
way as that in fat tree. Therefore, F2Tree for Leaf-Spine can
locally reroute quickly after S9 detects the failure, which costs
far less time.

F2Tree for VL2: VL2 [10] is another kind of well-known
multi-rooted DCN topology, which has a denser interconnec-
tion than fat tree and improves the ability of fault tolerance.

1950 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 10. F2Tree for Leaf-Spine DCN: Duration of connectivity loss upon
different failure conditions and the CDF of request completion time when
experiencing different number of concurrent failures (CF). (a) Duration of
connectivity loss. (b) CDF of request completion time.

Fig. 11. F2Tree for VL2 DCN: Duration of connectivity loss upon different
failure conditions and the CDF of request completion time when experiencing
different number of concurrent failures (CF). (a) Duration of connectivity loss.
(b) CDF of request completion time.

In VL2, the core switches and aggregation switches are inter-
connected in a full-mesh. Thus for downward link between
core and aggregation layer, there are immediate backup links
that can be used for local rerouting. However, downward links
between aggregation and ToR switches still lack redundancy,
thus an aggregation switch has to wait for control plane
communication and calculation if any of these links fails. The
left part of Fig. 9(b) shows an example of a VL2 topology.
If link S12-S6 fails, VL2 DCN has to wait control plane
communication and calculation, before the connection from
host S to D is recovered. Therefore, to further improve VL2’s
fault tolerance, we can apply F2Tree scheme to the aggregation
layer in VL2, as the right part of Fig. 9(b) shows. As such,
S12 can locally reroute using the across links once S12−S6
fails, before the control plane reacts.

2) Evaluation Results: We evaluate the performance of
F2Tree for the Leaf-Spine and VL2 DCNs, using the same
emulation environment as before (§V). Similarly, we use
micro benchmarks (§V-A) to examine Leaf-Spine, VL2 and
F2Tree’s performance under different failure conditions, and
use macro benchmarks (§V-B) to show how F2Tree can benefit
the performance of upper layer application based on the
acceleration of failure recovery. We build the topology using
homogeneous 8-port switches as before. All the experiment
settings are the same as in §V.

Fig. 10 and 11 show the results of using F2Tree for Leaf-
Spine and VL2 DCN respectively. For Leaf-Spine, a two-layer
DCN topology, F2Tree can protect the downward link from
Spine switches to ToR switches. Thus, as shown in Fig. 10(a),
F2Tree can shorten the duration of connectivity loss from

about 270ms to about 70ms, under failure condition C1, C4,
C5 and C6, except for the extreme case C7. Note that C2
and C3 are failure conditions related to links between core
and aggregation switches in three-layer topology, thus are
not applicable to Leaf-Spine. Fig. 10(b) shows the CDF of
request completion time of Leaf-Spine DCN and F2Tree for
Leaf-Spine, using the same application and evaluation settings
as §V-B. In Leaf-Spine, there are about 0.17% and 2.36%
requests that missed the deadline under one and five concurrent
failure conditions, respectively. Benefiting from acceleration of
failure recovery, F2Tree can reduce the deadline missing ratio
down to 0% and ∼0.25% under these two failure conditions,
respectively.

As for VL2, F2Tree offers protection to the downward links
from aggregation switches to ToR switches. Fig. 11(a) shows
the the duration of connectivity loss in the micro benchmarks
under different failure conditions. In original VL2, there is no
immediate backup links for downward links between aggre-
gation and ToR layer. Thus for failure conditions C1, C4, C5
and C6, which are related to the failure of these links, F2Tree
can shorten the recovery time from about 270ms to about
70ms. For link failures between core and aggregation layer,
VL2 has already offered a full-mesh connection with many
immediate backup links, which makes it perform well under
conditions C2 and C3. F2Tree makes no modification between
core and aggregation layer, and performs the same as VL2
under these two conditions. Note that in condition C3, where
both the link between the aggregation and the ToR switch
and the link between the core and the aggregation switch fail,
VL2 can quickly rerouted around the failure. It is because that
once the the link between the core and the aggregation switch
fails, the core switch will locally choose another aggregation
switch below to forward packets, which also helps it rerouted
around the failed link below between the aggregation and ToR
switch. As shown in Fig. 11(b), the acceleration of failure
recovery brings a 100% and ∼76% reduction of deadline
missing requests in F2Tree for VL2, under conditions of 1
concurrent failure and 5 concurrent failures, respectively.

B. Centralized Routing DCNs

There are also several existing data centers [27], [28] using
centralized routing DCNs. For example, recently, Google has
published the routing architecture of its data centers [28],
which uses logically centralized state and control. In this
section, we show that F2Tree can also accelerate failure
recovery for these centralized routing DCNs.

1) F 2Tree for Centralized Routing DCNs: Originally, when
a failure happens in the centralized routing DCNs, if there
is no local backup routes, the detecting switch will pass
the failure message up to the controller. Then the controller
calculates new routing paths using global link message, and
delivers the new routing tables to affected switches. Besides
the time for centralized calculation, in the worst case, original
centralized routing DCNs require one message from the switch
detecting failure to the controller, and one message from the
controller to each affected switches. As the DCN scales larger,
the communication and processing will take quite a long

CHEN et al.: F2TREE: RAPID FAILURE RECOVERY FOR ROUTING IN PRODUCTION DCNs 1951

Fig. 12. F2Tree for centralized routing DCN: Duration of connectivity
loss upon different failure conditions, and the reduction of deadline missing
requests using F2Tree compared to original centralized routing DCN, when
experiencing different number of concurrent failures (CF). (a) Duration of
connectivity loss. (b) Reduction of deadline missing requests.

time, causing a substantial duration of connectivity loss upon
failures. For example, Google [28] reports that for failures of
downward links without local backup routes, it takes about
four seconds for routing connectivity recovery, although the
physical connection exists.

Again, F2Tree’s scheme can be applied to centralized
routing DCNs, by rewiring two links in each pod of the
aggregation or core layer. By adding backup paths in the
corresponding switches’ routing table, switches could locally
reroute around failures, before uploading and waiting for the
new routes calculated by the controller. Therefore, F2Tree
can also significantly reduce the time for failure recovery in
centralized routing DCNs, especially in a large scale network.

2) Evaluation Results: We also evaluate the performance
of F2Tree for centralized DCNs, using the same micro bench-
marks (§V-A) and macro benchmarks (§V-B) as before. Note
that in this experiment, we use the global routing module
in NS3 [22] to simulate the centralized routing. We take a
centralized routing DCN with fat tree topology as the baseline,
and use F2Tree on it. We set the local recovery time of failures
where local switch has backup routes and paths (e.g. one of the
upward links fails) to be 125ms, a value as reported in [28].
For the recovery time of failures which needs communications
and calculation of the controller, we set it to be 4s [28]. All the
rest experiment settings are the same as in §V. The topology
is built using homogeneous 8-port switches as before.

Fig. 12(a) and 12(b) respectively show the results of
recovery time under different failure conditions, and how
the upper layer applications benefit from the acceleration of
failure recovery using F2Tree for the centralized routing DCN.
F2Tree shortens the recovery time from 4s to 125ms under
almost all the failure conditions, except the extreme case C7
which we discussed before. Furthermore, for the up-layer
applications, Fig. 12(b) shows that F2Tree can reduce the
deadline missing requests by 100% and ∼ 99% compared
with the original centralized routing DCN, under conditions
of 1 and 5 concurrent failure(s), respectively.

VII. RELATED WORK

DCN Fast Failure Recovery: Aspen Tree [3] requires a
change to the fat tree fabric and a new routing protocol.
It shares the same intuition as F2Tree to reduce the failure
recovery time by increasing the path redundancy in current

fat tree DCNs, but in a different way. Switches in the upper
layer connect to each pod below with more than one link in
Aspen Tree. Through a new failure reaction and notification
protocol combining with the modified topology, Aspen Tree
shortens the routing convergence time compared to fat tree.
However, except introducing a new protocol, the modification
to original topology is at the expense of more than half of
the network bisection as fat tree (§III). Moreover, Aspen Tree
only has immediate backup links for downward links in the
fault-tolerant layer, which may still incur a substantial time
for recovery from downward failures at other layers.

DDC [4] requires both a new routing protocol and data
plane forwarding hardware. Before control plane converges
after failures, DDC will reverse a packet’s forwarding direction
once it encounters failure. Packets will be bounced in the
network, according to an ingenious algorithm, and finally get
to its destination. However, packet bouncing in DDC could
greatly inflate the paths and may cause congestion due to the
lack of global control. Furthermore, the characteristic of fat
tree topology may cause the packet bouncing to its sender
switch to find an alternate path under certain failures, which
incurs a longer delay and potential congestion.

Unlike the works mentioned before, F10 [16] presents a
whole new fault-tolerant DCN solution. F10 combines new
topology, failover and load balancing protocols, and failure
detector to provide a completely novel solution for fault-
tolerant centralized routing DCNs, thus not applicable to
existing production DCNs.

Existing Fast Rerouting Schemes: There are also other
existing fast rerouting (FRR) schemes designed for IP net-
work, such as MPLS Fast Reroute (MPLS FRR) [29]. It is
commonly used to protect an individual link by providing a
backup path, which can route traffic around failure. There are
two major differences between F2Tree and MPLS FRR. First,
MPLS FRR itself does not offer additional path redundancy,
it just speeds up the process of switching to the backup
path. Second, the backup path in MPLS FRR is manually
configured based on additional lower layer information and
non-trivial algorithms such as shared risk groups. In multi-
rooted tree DCNs that lack redundancy for downward links,
it is inherently hard to provide planned backup paths for all
complicated failure situations, which needs extremely careful
pre-configuration.

Facebook’s DCN Topology: First revealed in a 2-page
paper [30] and recently revisited in [31], Facebook’s DCN
also constructs a ring in each pod of aggregation switches
and core switches. The use of the ring is similar to that of
topology of F2Tree. However, [30], [31] only briefly mention
the ring while presenting Facebook overall DCN topology, and
the ring’s primary usage in Facebook’s DCN is to provide
faster and more direct paths for large amount of traffic between
core switches. It is unclear whether the ring is designed for
failure recovery in Facebook and how/whether it works for
failure recovery studied in our paper. In contrast, our paper
has a few important differences from the Facebook papers.
First, our paper presents an thorough study on the cause of
DCN slow failure recovery problem. Second, we propose a
comprehensive solution F2Tree which includes not only the

1952 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

ring structure, but also fast rerouting configurations. In other
words, without fast rerouting configuration, the ring structure
alone does not help improve failure recovery time. Third, we
show how to use F2Tree for various other multi-rooted tree
topologies as well as centralized routing DCNs.

Randomly Wired DCN Topology: Recent works such as
Jellyfish [32] use randomly wired topology between switches
which can significantly increase the overall capacity and
scalability of DCN. Such randomly wired topology could also
potentially help to accelerate routing recovery from failures.
To compare the routing recovery efficiency between F2Tree
and such methods, we implement Jellyfish7 in the emulation
and use the same macro benchmark as in §V-B to evaluate their
performance. Results show that Jellyfish performs slightly
better than F2Tree. Specifically, for 1 concurrent failure
condition, both F2Tree and Jellyfish encounter no deadline-
missing requests. But for 5 concurrent failure condition, the
fraction of deadline-missing requests is ∼0.11% in F2Tree
but only ∼0.09% in Jellyfish. However, there are several key
difficulties to deploy random topology in current production
DCNs: 1) Turning existing fat tree into random topology
requires significant wiring effort, 2) The physical layout of
switches and servers also needs a lot of changes, 3) It is
difficult and still remains unknown that how to keep live traffic
unaffected during rewiring fat tree topology into randomly
wired.

VIII. CONCLUSION

In this paper, we present a readily deployable fault-tolerant
solution called F2Tree for existing production DCNs. Through
only rewiring two links and changing configurations, F2Tree
increases the downward link redundancy and achieves local
fast rerouting for downward link failures, greatly accelerating
the failure recovery and improving upper layer application’s
performance. F2Tree is one important step towards improving
the fault-tolerance of existing production DCNs. We believe
that the principle behind F2Tree, increasing path redundancy
and rerouting locally, is one promising direction for acceler-
ating failure recovery for routing in DCNs.

ACKNOWLEDGMENT

The authors would like to thank J. Yang and
X. Nie for their help in the experiments. Also, they
greatly thank K. Tan for offering useful DCN background
knowledge, and K. Chen for the suggestions to improve this
paper. In addition, they thank K. Sui, D. Deng, and J. Liao
for their proofreading on this paper.

REFERENCES

[1] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” in Proc.
SIGCOMM, Aug. 2011, pp. 350–361.

[2] R. Potharaju and N. Jain, “When the network crumbles: An empirical
study of cloud network failures and their impact on services,” in Proc.
SOCC, Oct. 2013, Art. no. 15.

7We use ECMP routing for Jellyfish instead of k-shortest-path, which
requires significant changes to current DCN routing protocols.

[3] M. Walraed-Sullivan, A. Vahdat, and K. Marzullo, “Aspen trees: Balanc-
ing data center fault tolerance, scalability and cost,” in Proc. CoNEXT,
Dec. 2013, pp. 85–96.

[4] J. Liu et al., “Ensuring connectivity via data plane mechanisms,” in
Proc. NSDI, 2013, pp. 113–126.

[5] (2010). Cisco Data Center Infrastructure 2.5 Design Guide. [Online].
Available: http://www.cisco.com/application/pdf/en/us/guest/netsol/
ns107/c649/ccmigration_09186a008073377d.pdf

[6] J. Moy, OSPF Version 2, document RFC 2178, Internet Engineering
Task Force, California, USA, Jul. 1997.

[7] Y. Rekhter, T. Li, and S. Hares, A Border Gateway Protocol 4 (BGP-4),
document RFC 1771, Internet Engineering Task Force (IETF), Califor-
nia, USA, 2006.

[8] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware
datacenter TCP (D2TCP),” in Proc. SIGCOMM, Aug. 2012,
pp. 115–126.

[9] vSphere ESX and ESXi Info Center, accessed on Jul. 1, 2015. [Online].
Available: http://www.vmware.com/products/esxi-and-esx/

[10] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. SIGCOMM, Aug. 2009, pp. 51–62.

[11] Quagga Routing Suite, accessed on Jul. 1, 2015. [Online]. Available:
http://www.nongnu.org/quagga/

[12] M. Goyal et al., “Improving convergence speed and scalability in OSPF:
A survey,” IEEE Commun. Surveys Tuts., vol. 14, no. 2, pp. 443–463,
2nd Quart., 2012.

[13] A. Fabrikant, U. Syed, and J. Rexford, “There’s something about MRAI:
Timing diversity can exponentially worsen BGP convergence,” in Proc.
IEEE INFOCOM, Apr. 2011, pp. 2975–2983.

[14] OSPF Shortest Path First Throttling, accessed
on Jul. 1, 2015. [Online]. Available: http://www.
cisco.com/c/en/us/td/docs/ios/12_2s/feature/guide/fs_spftrl.html/

[15] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. SIGCOMM, Aug. 2008,
pp. 63–74.

[16] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10:
A fault-tolerant engineered network,” in Proc. NSDI, 2013,
pp. 399–412.

[17] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. SIGCOMM, Aug. 2014, pp. 503–514.

[18] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm,
document RFC 2992, Internet Engineering Task Force (IETF),
California, USA, Nov. 2000.

[19] Complex Topology and Wiring Validation in Data Cen-
ters, accessed on Jul. 1, 2015. [Online]. Available:
https://cumulusnetworks.com/blog/complex-topology-and-
wiring-validation-in-data-centers/

[20] iPerf—The Network Bandwidth Measurement Tool, accessed on Jul. 1,
2015. [Online]. Available: https://iperf.fr/

[21] D. Katz and D. Ward, Bidirectional Forwarding Detection (BFD),
document RFC 5880, Internet Engineering Task Force, California, USA,
Jun. 2010.

[22] ns-3, accessed on Jul. 1, 2015. [Online]. AVailable: http://www.
nsnam.org/

[23] Direct Code Execution, accessed on Jul. 1, 2015. [Online]. Available:
http://www.nsnam.org/overview/projects/direct-code-execution/

[24] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better
never than late: Meeting deadlines in datacenter networks,” in Proc.
SIGCOMM, Aug. 2011, pp. 50–61.

[25] C. Raiciu et al., “Improving datacenter performance and robustness
with multipath TCP,” in Proc. ACM SIGCOMM Conf., Aug. 2011,
pp. 266–277.

[26] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
7th USENIX Conf. Netw. Syst. Design Implement. (NSDI), Apr. 2010,
p. 19.

[27] R. N. Mysore et al., “Portland: A scalable fault-tolerant layer 2 data
center network fabric,” in Proc. SIGCOMM, Aug. 2009, pp. 39–50.

[28] A. Singh et al., “Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network,” in Proc. ACM Conf.
Special Interest Group Data Commun., Aug. 2015, pp. 183–197.

[29] P. Pan, G. Swallow, and A. Atlas, Fast Reroute Extensions to RSVP-TE
for LSP Tunnels, document RFC 4090, Internet Engineering Task Force
(IETF), California, USA, 2005.

[30] N. Farrington and A. Andreyev, “Facebook’s data center network archi-
tecture,” in Proc. IEEE Opt. Interconnects Conf., May 2013, pp. 49–50.

CHEN et al.: F2TREE: RAPID FAILURE RECOVERY FOR ROUTING IN PRODUCTION DCNs 1953

[31] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM Conf. Special
Interest Group Data Commun., Aug. 2015, pp. 123–137.

[32] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Net-
working data centers randomly,” in Proc. 9th USENIX Conf. Netw. Syst.
Design Implement. (NSDI), Berkeley, CA, USA, 2012, p. 17.

[33] G. Chen, Y. Zhao, D. Pei, and D. Li, “Rewiring 2 links is enough:
Accelerating failure recovery in production data center networks,” in
Proc. 35th IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2015,
pp. 569–578.

Guo Chen received the B.S. degree from Wuhan
University in 2011 and the Ph.D. degree from
Tsinghua University in 2016. He is currently an
Associate Researcher with Microsoft Research Asia,
Beijing, China. His current research interests focus
on data center networking.

Youjian Zhao received the B.S. degree from
Tsinghua University in 1991, the M.S. degree from
the Shenyang Institute of Computing Technology,
Chinese Academy of Sciences, in 1995, and the
Ph.D. degree in computer science from Northeastern
University, China, in 1999. He is currently a Profes-
sor with the CS Department, Tsinghua University.
His research mainly focuses on high-speed Internet
architecture, switching and routing, and high-speed
network equipment.

Hailiang Xu is currently pursuing the bachelor’s
degree with the Department of Computer Science,
Beijing University of Posts and Telecommunica-
tions. His current research interests are data center
networks and wireless networks.

Dan Pei received the B.S. and M.S. degrees
from Tsinghua University, Beijing, China, in 1997
and 2000, respectively, and the Ph.D. degree
from the University of California at Los Angeles,
Los Angeles, CA, USA, in 2005. He is currently
an Associate Professor with Tsinghua University.
His current research interests are management and
improvement of the performance and security of
the networked services, through big data analytics
with feedback loop. Right now, he is focusing on
improving the mobile Internet performance over Wi-

Fi networks and data center networks.

Dan Li received the Ph.D. degree in computer
science from Tsinghua University in 2007. He is
currently an Associate Professor with the Com-
puter Science Department, Tsinghua University. His
research interest includes future Internet architecture
and data center networking.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

