
1376 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

FUSO: Fast Multi-Path Loss Recovery for
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Abstract— To achieve low TCP flow completion time (FCT) in
data center networks (DCNs), it is critical and challenging to
rapidly recover loss without adding extra congestion. Therefore,
in this paper, we propose a novel loss recovery approach fast
multi-path loss recovery (FUSO) that exploits multi-path diversity
in DCN for transport loss recovery. In FUSO, when a multi-path
transport sender suspects loss on one sub-flow, recovery packets
are immediately sent over another sub-flow that is not or less
lossy and has spare congestion window slots. FUSO is fast in that
it does not need to wait for timeout on the lossy sub-flow, and
it is cautious in that it does not violate the congestion control
algorithm. Testbed experiments and simulations show that FUSO
decreases the latency-sensitive flows’ 99th percentile FCT by up
to ∼82.3% in a 1-Gb/s testbed, and up to ∼87.9% in a 10 Gb/s
large-scale simulated network.

Index Terms— Data center networks, packet loss, transport loss
recovery, multi-path transport.

I. INTRODUCTION

IN RECENT years, large data centers have been built at
an unforeseen rate and scale worldwide. Each data center

may contain 100K servers, interconnected together by a large
data center network (DCN) consisting of thousands of network
equipments e.g., switches and links. Modern applications
hosted in DCN care much about the tail flow completion
time (FCT) (e.g., 99th percentile). For example, in response
to a user request, a web application (e.g., Bing, Google,
Facebook) often touches computation or memory resources of
hundreds of machines, generating a large number of parallel
latency-sensitive flows within the DCN. The overall applica-
tion performance is commonly governed by the last completed
flows [1], [2]. Therefore, the application performance will be
greatly impaired if the network is lossy, as the tail FCT of
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TCP flows may greatly suffer from retransmission timeouts
(RTO) [3], [4] under lossy condition.

Unluckily, packet losses are not uncommon even in
well-engineered modern datacenter networks (§II-A). Conven-
tionally, most of packet losses are due to buffer overflow
caused by congestion, e.g., incast [5], [6]. However, with the
increasing deployment of the Explicit Congestion Notifica-
tion (ECN) and fine-tuned TCP congestion control algorithm
(e.g., [1], [7]), the network congestion has been greatly mit-
igated (e.g., from 1% to 0.01% [6]). But it still cannot be
eliminated [7], [8]. Besides congestion, packets may also get
lost due to failure (e.g., malfunctioning hardware [3]). While
normally hardware-induced loss rate is low (∼0.001%) [3],
the rate can exceed 1% when hardware does not function
properly. The reason for malfunctioning hardware is complex.
It can come from ASIC deficits, or simply due to aging.
Although the overall instances of malfunctioning hardware are
small, once it happens, it usually takes hours or days to detect
and mitigate [3].

We show, both analytically and experimentally, that even
a moderate rise of loss rate (e.g., to 1%) can already cause
more than 1% of flows to hit RTOs (§II), and therefore greatly
increases the 99th percentile of flow FCT. Thus, we need a
more robust transport that can ensure low tail FCT even when
facing this adverse situation with lossy hardware. Previously,
several techniques have been proposed to reduce TCP RTOs
by adding more aggressiveness in loss recovery [4]. These
schemes, originally designed for the Internet, have not been
well tested in a DCN environment, where congestion may
be highly correlated, i.e., incast. Therefore, they are facing
a difficult dilemma: if being too aggressive, this additional
aggressiveness may offset the effect of the fine-tuned conges-
tion control algorithm for DCN and induce congestion losses;
Otherwise, being too timid would still cause delayed tail FCT.

In this paper, we advocate to utilize multiple par-
allel paths, which are plenty in most existing DCN
topologies [6], [9]–[12], to perform faster loss recovery,
without adding more congestion. To this end, we present
Fast Multi-path Loss Recovery (FUSO), which employs
multiple distinct paths for data transmission (similar to
MPTCP [13]–[15]). FUSO fundamentally avoids the afore-
mentioned dilemma of single-path TCP enhancements [4].
On one hand, FUSO strictly follows TCP congestion control
algorithm which is well tuned for existing DCN. That is,
a packet can leave the sender only when the TCP conges-
tion window allows. Therefore, FUSO will behave equally
aggressively as TCP flows (or precisely MPTCP flows). On
the other hand, FUSO sender will proactively (immediately)
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recover potential packet loss in a few paths (usually the
“bad” paths) using other paths (usually the “good” paths).
By exploiting the diversity of these paths, FUSO can keep
the tail FCT low even with malfunctioning hardware. This
behavior is fundamentally different from MPTCP, where each
sub-flow is normally responsible to only recover its own losses.
Although MPTCP provides an excellent performance for long
flows’ throughput, it may actually hurt the tail FCT of small
flows compared to normal TCP (more discussion in §II-D).

Particularly, FUSO conducts proactive multi-path loss
recovery as follows. When a sub-flow has no more new data
to send, FUSO tries to utilize this sub-flow’s spare resources
permitted by transport congestion control to do proactive loss
recovery on another sub-flow. FUSO speculates a path status
from the information already recorded in the transport stack
(e.g., packet retransmission). Then it proactively transmits
recovery packets through those good paths, to protect those
packets suspected to be lost in the bad paths. By doing this,
there is no need to wait for bad paths to recover loss by
themselves which may cost a rather long time (e.g., rely on
timeout). Note that, because FUSO adds no aggressiveness to
congestion control, even when loss happens at the edge (e.g.,
incast) where no path diversity could be utilized, FUSO can
still gracefully bound the redundancy incurred by proactive
loss recovery, and offer a good performance (§VI-B.3). The
major contributions of the paper are summarized as follows.

1) We measure the attributes of packets loss in a Microsoft’s
production DCN. Then, through analysis and testbed experi-
ments, we quantify the impact of packet loss on TCP FCT in
DCN for the first time. We show that even a moderate rise
of loss rate (e.g., to 1%) would already cause enough flows
(e.g., >1%) to timeout to affect the 99th percentile FCT.

2) We identify that the fundamental challenge for transport
loss recovery in DCN is how to accelerate loss recovery under
various loss conditions without causing congestion. We further
show that existing loss recovery solutions differ just in their
fixed choices of aggressiveness when dealing with the above
challenge, and are not adaptive enough to deal with different
loss conditions.

3) We design a novel loss transport recovery approach that
exploits multi-path diversity in DCN. In our proposed solution
FUSO, when loss is suspected on one sub-flow, recovery
packets are immediately sent over another sub-flow that is
speculated to be not or less lossy and has a spare congestion
window.

4) We implement FUSO in Linux kernel with ∼900 lines
of code (available at https://github.com/1989chenguo/FUSO).
Experiment results show that FUSO’s dynamic speculation-
based loss recovery adapts to various loss conditions well.
It decreases the latency-sensitive flows’ 99th percentile FCT
by up to ∼82.3% in an 1Gbps testbed, and up to ∼87.9% in
a 10Gpbs large-scale simulated network.

II. FIGHTING AGAINST PACKET LOSS

A. Packet Loss in DCN
We first measure the attributes of packets loss in DCN,

using Netbouncer within a Microsoft Azure’s production data
center. NetBouncer is a service deployed in Microsoft data

Fig. 1. Loss rate and location distribution of lossy links (loss rate > 1%) in
a production DCN. Level0-3 denote server↔ToR, ToR↔Agg, Agg↔Spine,
and Spine↔Core, respectively.

centers for measuring link status. It is an end-host and switch
joint solution and employs an active probing mechanism. End-
hosts inject probing packets destined to network switches via
IP-in-IP tunneling and switches bounce back the packets to
the endhosts. It is an always-on service and the probing is
done periodically. We have measured the packet loss in the
data center for five days during December 1st-5th, 2015. The
data center has four layers of switches, top-of-rack (ToR),
Aggregation (Agg), Spine and Core from bottom to top.

Loss Is Not Uncommon: In our operation experience,
we find that although the portion of lossy links is small, they
are not uncommon (also revealed in [3]). We define those
links with loss rate (measured per hour) greater than 1% as
lossy links, which may greatly impair the up-layer application
performance (§II-B). Taking one day’s data as an example,
Fig. 1 (left part) shows the distribution of average loss rate
among all lossy links during an hour (22:00-23:00). The mean
loss rate of all the lossy links is ∼4%, and ∼63% of lossy links
have the loss rate between 1% to 10%. About 22% of links
even have a detected loss rate larger than 60%, where such
exceptionally high loss rate maybe due to switch ASIC deficits
(e.g., packet black-hole [3]). We examine all the 5 days’s data
and find the loss rate distributions all very similar. It shows that
although the portion of lossy link is small, they are the norm
rather than the exception in large-scale data centers. Packet
loss can be caused due to various reasons including failures
and congestion.

Location of Loss: Next, we analyze the location where
packet loss happens. As shown in Fig. 1 (right part), among
all the detected lossy links, there are only ∼22% of lossy
links that are at the edge (server↔ToR, i.e., level0), and
∼78% are happening in the network (above ToR, i.e., level1-
3). About 22%, 24%, 25% and 29% of lossy links are
located respectively at server↔ToR, ToR↔Agg, Agg↔Spine
and Spine↔Core.

In summary, even in well-engineered modern data center
networks, packet losses are inevitable. Although the overall
loss rate is low, the packet loss rate in some areas (e.g.,
links) can exceed several percents, when there are failures such
as malfunctioning hardware or severe congestions. Moreover,
most losses happen in the network instead of the edge.

B. Impact of Packet Loss

Once a packet gets lost in the network, TCP needs to recover
it to provide reliable communication. There are two existing
loss detection and recovery mechanisms in TCP1: fast recovery

1Many production data centers also use DCTCP [1] as their network
transport protocol. DCTCP has the same loss recovery scheme as TCP. Thus,
for ease of presentation, we use TCP to stand for both TCP and DCTCP while
discussing the loss recovery.
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and retransmission timeout (RTO). Fast recovery detects a
packet loss by monitoring duplicated ACKs (or DACKs) and
starts to retransmit an old packet once a certain number
(i.e., three) of DACKs have been received. If there are not
enough DACKs, TCP has to rely on RTO and retransmits all
un-ACKed packets after the timeout. To prevent premature
timeouts and also limited by the kernel timer resolution,
the RTO value is set rather conservatively, usually several
times of the round-trip-time (RTT). Specifically, in a produc-
tion data center, the minimum RTO is set to be 5ms [1], [3]
(the lowest value supported in current Linux kernel [16]),
while the RTT is usually hundreds of μs [1], [3], [16]. As a
consequence, for a latency-sensitive flow, which is usually
small in size, encountering merely one RTO would already
increase its completion time by several times and cause
unacceptable performance degradation.

Therefore, the core issue in achieving low FCT for small
latency-sensitive flows when facing packet losses is to avoid
RTO. However, current TCP still has to rely on RTO to recover
from packet loss in the following three cases [4], [17], [18].
i) The last packet or a series of consecutive packets at the tail
of a TCP flow are lost (i.e., tail loss), where the TCP sender
cannot get enough DACKs to trigger fast recovery and will
incur an RTO. ii) A retransmitted packet also gets lost (i.e.,
retransmission loss). iii) A whole window worth of packets
are lost (i.e., whole window loss).

To understand how likely RTO may occur to a flow, we take
both a simple mathematical analysis (estimated lower bound)
and testbed experiments to analyze the timeout probability
of a TCP flow with different flow sizes and different loss
rates. We consider one-way random loss condition here for
simplicity, but the impact on TCP performance and our FUSO
scheme are by no means limited to this loss pattern (see §VI).

Let’s first assume the network path has a loss probability
of p. i) Assuming the TCP sender needs k DACKs to trigger
fast recovery, any of the last k packets getting lost will lead
to an RTO. This tail loss probability is ptail = 1 − (1 − p)k.
For standard TCP, k = 3, but recent Linux kernel which
implement’s early retransmit [19] reduces k to 1 at the end
of the transaction. Therefore, if we consider early retransmit,
the tail loss probability is simply p. ii) For retransmission
loss, clearly, the probability that both the original packet and
its retransmission are lost is p2. Let x be the number of
packets in a TCP flow. Excluding the last k packets which
have been calculated by the tail loss, then, the probability
that the flow encounters at least one retransmission loss is
pretx = 1 − (1 − p2)x−k. iii) As for whole window loss,
when the TCP window size is w, the probability can easily be
derived as pwin(w) = pw. However, it is hard to calculate
the overall whole window loss probability throughout the
flow transmission (denoted as pwin), because the window
size continuously changes by congestion control to probe
bandwidth or react to packet loss. Since the TCP flow window
size is often very large in data centers (high bandwidth and low
loss rate), typically pwin is much smaller than ptail and pretx.
As such, we neglect the whole window loss, and approximate
the timeout probability of the flow as pRTO � ptail + pretx,
which can serve as the lower bound. The solid lines in Fig. 2

Fig. 2. Timeout probability of various flows passing a path with different
random packet loss rate.

show the analyzed lower bound timeout probability of a TCP
flow with different flow sizes under various loss rates. Here,
we consider the early retransmit (k = 1).

To verify our analysis, we also conduct a testbed experiment
to generate TCP flows between two servers. All flows pass
through a path with one-way random loss. Netem [20], [21] is
used to generate different loss rate on the path. More details
about the testbed settings can be found in §V-B and §VI. The
dotted lines in Fig. 2 shows the testbed results, which verify
that our analysis serves as a very close lower bound of the
timeout probability.

There are a few observations. Firstly, for tiny flows (e.g.,
10KB), the timeout probability linearly grows with the random
loss rate. This is because the tail loss probability dominates.
However, a tiny loss probability would affect the tail of FCT.
For example, a moderate rise of the probability to 1% would
cause a timeout probability larger than 1%, which means the
99th percentile of FCT would be greatly impacted. Secondly,
when the flow size increases, e.g.,≥100KB, the retransmission
loss may dominate, especially when the random hardware loss
rate is larger than 1%. We can see a clear rise in timeout
probabilities for the flows with 100KB in Fig. 2. In summary,
we conclude that a small random loss rate (i.e., >1%) would
already cause enough flows to timeout to affect the 99th

percentile of FCT. This can also explain why a malfunctioning
switch in the Azure datacenter that drops ∼2% of the packets
causes great performance degradation of all the services that
traverse this switch [3].

C. Challenge for TCP Loss Recovery
To prevent timeout, when there are not enough returned

DACKs to trigger fast recovery, prior work (e.g., [4]) adds
aggressiveness to congestion control to do loss recovery before
RTO. However, deciding the aggressiveness level, i.e., how
long to wait before sending recovery packets, to adapt to
complex network conditions in DCNs is a daunting task.

As introduced before, congestion and failure loss coexist
in DCN. Congestion losses are very bursty and often lead
to multiple consecutive packet losses [1], [4], [5], [7]. For
congestion loss, recovery should be delayed for enough time
before being sent out after the original packets. If a recovery
packet is sent too fast before congestion disappears, the recov-
ery packet may get dropped by the overflowed buffer and
also worsen the congestion. However, for some failure loss
such as random drop, recovery packets should be sent as
fast as possible to accelerate the recovery process. Otherwise
the delay for sending recovery packets already increases the
FCT of latency-sensitive flows. Facing this difficult dilemma,
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previous schemes choose different aggressiveness levels in an
ad-hoc manner, from a conservative 2RTT in Tail Loss Probe
(TLP) [22], modestly conservative 1/4 RTT in TCP Instant
Recovery (TCP-IR) [23], to a very aggressive zero time in
Proactive [4]. Unfortunately, the fixed settings of aggressive-
ness levels make above existing schemes incapable of adapting
to complex loss conditions: different loss characteristics under
either congestion loss, failure loss or both.

Essentially, we identify that the fundamental challenge for
transport loss recovery in DCN is how to accelerate loss
recovery as soon as possible, under various loss conditions
without causing congestion. Single-path loss recovery is not
a promising direction to address this challenge because the
recovery packets have to be sent over the same path that is
under various loss conditions, the exact nature (congestion-
induced, failure-induced, or both) of which are often unclear to
the sender. One might think that through explicitly identifying
congestion loss using schemes such as CP [24], transport
can distinguish congestion and failure loss with the help of
switches. However, there lacks a study on such design and its
reliability under hardware failure conditions still remains to
be an open question in complex production DCNs.

D. Utilizing Multi-Path
Then it is natural to raise a question: why not try another

good path when loss is speculated on one “bad” path? Actu-
ally, current DCN environment offers us a good chance to
design a better loss recovery scheme based on multi-path.
Current DCN provides many parallel paths (e.g., 64 or more)
between any two nodes by dense interconnected topologies [6],
[9]–[12]. Usually, these paths have a big loss diversity due to
different congestion and failure conditions. When a few paths
are experiencing failure such as random loss or black-hole,
the rest paths (i.e., the majority) may remain in a good state
without failure loss. Also, caused by uneven load balance [25],
some paths may be heavily congested to drop packets while
other paths are in light load.

One might think that using multi-path transport protocol
such as MPTCP [13]–[15] is able to address the challenge
above. On the contrary, although MPTCP provides excellent
performance for long flows, it actually hurts the tail FCT of
small latency-sensitive flows under lossy condition (see §VI).
It is because that, while MPTCP explores multiple paths, each
of its paths normally has to recover loss by itself. Therefore,
its overall completion time depends on the last completed
sub-flow on the worst path. Simply exploring multiple paths
actually increases the chance to hit the bad paths.

To this end, we propose Fast Multi-path Loss Recovery
(FUSO), which leverages multi-path diversity for transport
loss recovery. FUSO fundamentally avoids the aforementioned
dilemma (§II-C), by utilizing those paths in good status to
proactively (or immediately) conduct loss recovery for bad
paths. First, FUSO is cautious in that it strictly follows TCP
congestion control algorithm that is tuned for existing DCN,
adding no aggressiveness. Second, FUSO is fast in that the
sender will proactively recover potential packet loss in bad
paths using good paths before timeout. As shown before,
most losses happen in the network (§II-A), which gives plenty

of opportunities for FUSO to leverage multi-path diversity.
On the other hand, sometimes packet losses may happen at
the edge (e.g., incast) due to congestion, where there is no
path diversity that can be utilized for multi-path loss recovery.
Thanks to strictly following the congestion control, FUSO can
adaptively throttle its proactive loss recovery behaviour and be
conservative to avoid worsening the congestion (see §VI-B.3).

Note that there is a mechanism named opportunistic
retransmission [14] in MPTCP, which may also trigger
proactive retransmission through alternative good sub-flows
similar to the scheme in our FUSO solution. However,
MPTCP opportunistic retransmission is designed for wide-area
network (WAN) to maintain a high throughput and minimize
the memory (receive or send buffer) usage, to cope with severe
reordering caused by diverse delay of multiple paths. It is
triggered only when the new data cannot be sent because
the receive window or the send buffer is full. It immediately
retransmits the oldest un-ACKed packet through alternative
good paths which have the smallest RTT. Although oppor-
tunistic retransmission helps to achieve a high throughput for
long flows in WAN scenario, it offers little help on maintaining
a low FCT under lossy condition in DCN scenario where paths
often have very similar delay. More importantly, in DCN those
latency-sensitive flows are often with too small sizes (e.g.,
<100KB) to cause severe reordering, which cannot eat up the
end-host’s buffer. Therefore, these small flows cannot trigger
the opportunistic retransmission.

III. FUSO DESIGN

A. Overview

We now introduce FUSO. The architecture of FUSO is
shown in Fig. 3. FUSO is built on top of the multi-path trans-
port, in which a TCP flow is divided into multiple sub-flows.
Note that FUSO focuses on multi-path loss recovery rather
than multi-path congestion control. Particularly, in this paper,
we build FUSO on MPTCP2 [13]–[15]. ECMP [26] or SDN
methods (e.g., XPath [27]) can be used to implicitly or explic-
itly map the sub-flows3 onto different physical paths in DCN.
FUSO leverages the existing MPTCP’s data distribution algo-
rithm to distribute regular data packets into different sub-flows.

The core scheme of FUSO is that, by strictly following
the congestion control, if there is a spare congestion window
(cwnd), FUSO first tries to transmit new data. If the up-layer
application currently has no new data, FUSO utilizes this
transmission opportunity to proactively/immediately transmit
recovery packets for those suspected lost (un-ACKed)4 packets
on “bad” sub-flows, by utilizing “good” sub-flows. Note that
FUSO does not affect the existing MPTCP opportunistic
retransmission mechanism triggered by full receive window.
These two mechanisms can be complementary to each other.

We separately discuss the FUSO sender and receiver for
better clarification. In a FUSO connection, the sender and

2Note that although we use MPTCP as the base of FUSO to introduce how
it works, the principle of FUSO loss recovery can also be implemented based
on other multi-path transport protocols.

3We use ‘sub-flow’ and ‘path’ interchangeably in this Section.
4For TCP with SACK [28] enabled, un-ACKed packets refer to those un-

SACKed and un-ACKed ones.
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Fig. 3. FUSO design overview.

Algorithm 1 Proactive Multi-Path Loss Recovery
1: function TRY_SEND_RECOVERIES( )
2: while BytesInF lightTotal < CWNDTotal and no

new data do
3: return ← SEND_A_RECOVERY( )
4: if return == NOT_SEND then
5: break
6: end if
7: end while
8: end function
1: function SEND_A_RECOVERY( )
2: FIND_WORST_SUB-FLOW( )
3: FIND_BEST_SUB-FLOW( )
4: if no worst found or no best sub-flow found then
5: return NOT_SEND
6: end if
7: recovery_packet←one un-ACKed packet of the worst

sub-flow
8: Send the recovery_packet through the best sub-flow
9: BytesInF lightTotal+ = Sizerecovery_packet

10: end function

receiver refer to the end hosts sending data and the ACK
respectively. Both ends are simultaneously the sender and
receiver in a two-way connection.

B. FUSO Sender
The FUSO sender’s proactive multi-path loss recov-

ery process can be summarized as Algo. 1. Specifically,
we insert a function TRY_SEND_RECOVERIES() in the trans-
port stack, monitoring the changes of BytesInF lightTotal,
CWNDTotal and the application data.5 This function needs
to be inserted into two positions: i) after all the data
delivered from the application has been pushed into the
transport send buffer and sent out, which indicates that there
is currently no more new data delivered from the up-layer
application; ii) after an ACK is received and the transport
status (e.g., BytesInF lightTotal, CWNDTotal) has been
changed. More implementation-related details are discussed

5BytesInF lightTotal and CWNDTotal refer to the total bytes in flight
and total congestion window of all sub-flows, respectively. Bytes in flight is
calculated by subtracting the (S)ACKed bytes from the bytes sent out.

in §V-A. Within this function, the sender calls the function
SEND_A_RECOVERY() to send a recovery packet if the fol-
lowing conditions are both satisfied: i) there is spare window
capacity allowed by congestion control, and ii) all new data
has been sent out.

In the function SEND_A_RECOVERY(), FUSO sender
first calls the function FIND_WORST_SUB-FLOW() and
FIND_BEST_SUB-FLOW() to find the current worst and best
sub-flows. The worst sub-flow is selected only among those
who have un-ACKed data, and the best sub-flow is selected
only among those whose congestion window (cwnd) has
spare spaces permitted by congestion control. We defer the
discussion on how to find the worst and best paths to §III-B.1.

If currently there is no worst or no best sub-flow, FUSO
stops generating recovery packets for this round. Next, if the
worst and best sub-flows are found, a recovery packet for
the worst sub-flow is generated. Because FUSO conducts
proactive loss recovery before a packet is detected as lost either
by DACKs or RTO, we have to guess which packet is most
likely to be the lost one. FUSO infers the packet as the oldest
un-ACKed packet which has been sent out for the longest
time. Thus, the sender proactively generates a recovery packet
for one un-ACKed packet on the worst path in the ascending
order of TCP sequence number (i.e., the oldest packet in this
path). To avoid adding too much unnecessary traffic to the
network, an un-ACKed packet will be sent at most once by
the proactive loss recovery scheme in FUSO.

After the recovery packet is generated, FUSO sender sends
it through the best sub-flow. Note that the recovery packet is
regarded as a new data packet for the best sub-flow. The recov-
ery packet is under the best sub-flow’s congestion control, and,
if it gets lost in the best sub-flow, it will be retransmitted
as normal packets in the best sub-flow using the standard
TCP loss recovery. However, to avoid duplicate recovery, these
packets will not be counted in the un-ACKed packets waiting
for recovery when FUSO sender conducts fast multi-path
loss recovery later. In the last step of SEND_A_RECOVERY(),
BytesInF lightTotal is incremented and the conditions in the
while loop in TRY_SEND_RECOVERIES() will be checked again.

Fig. 3 shows an example that FUSO sender conducts multi-
path loss recovery, to proactively recover the two suspectedly
lost packets (P3, P4) in the “bad” path (sub-flow 2) using the
“good” path (sub-flow N).
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1) Path Selection: Whenever congestion control offers a
chance to transmit packets, FUSO tries to proactively recover
the suspected lost packet in the currently “worst” path which
is most likely to encounter packet loss, utilizing the cur-
rently “best” path which is least likely to encounter packet
loss. Therefore, we define a metric Cl = α · lossrate +
β · lossratelast, to describe the possibility of packet loss
happening in a sub-flow. Cl is the weighted sum of the overall
packet loss rate lossrate and the most recent packet loss
rate lossratelast in this sub-flow. α and β are the respective
weight of each part. Since current TCP/MPTCP retransmits
a packet after detecting it as lost either by DACK or RTO,
FUSO uses the ratio of total retransmitted packets to the total
transmitted packets as the approximation of lossrate. Note
that recovery packets generated by FUSO are regarded as
new packets instead of retransmitted packets for sub-flows.
lossratelast is calculated as the ratio of one to the number of
transmitted packets from (including) the last retransmission.

The worst sub-flow is picked among those which have
at least one un-ACKed packet (possibly lost), and with the
largest Cl. For sub-flows which have never encountered a
retransmission yet, their Cl equals zero. If all sub-flows’ Cl

equals zero, FUSO picks the one with the largest measured
RTT thus to optimize the overall FCT.

The best sub-flow is picked among those which have
spare cwnd, and with the smallest Cl. For sub-flows never
encountering a retransmission yet, their Cl equals zero and is
smaller than others. If more than one sub-flows have zero Cl,
FUSO picks the one with the smallest measured RTT as the
best sub-flow. Note that at the initial state, some sub-flows may
have never transmitted any data when FUSO starts proactive
loss recovery. Then these sub-flows’ Cl equal infinity and have
the least priority when FUSO selects the best sub-flow. If all
sub-flows’ Cl equal infinity, FUSO randomly picks one as the
best sub-flow. Note that the best and worst sub-flows may be
the same one. Under this condition, FUSO simply transmits
the recovery packets in the same sub-flow after the original
packets.

C. FUSO Receiver
FUSO receiver is relatively simple. The right part of Fig. 3

shows the process of recovering loss at FUSO receiver. In
multi-path transport protocol such as MPTCP, the receiver
has a data-level (i.e., flow-level) receive buffer and each
sub-flow has a virtual receive buffer that is mapped to the
data-level receive buffer. Upon receiving a FUSO recovery
packet, FUSO receiver directly inserts the recovery packet
into the corresponding position of the data-level receive buffer,
to complete the flow transmission. The FUSO recovery packets
will not affect the bad sub-flows’ behaviour on the sub-flow-
level, but directly recovery the lost packets on the data-level.

For the best sub-flow that transmits FUSO recovery packets,
these packets are naturally regarded as normal data packets in
terms of this sub-flow’s congestion control and original TCP
loss recovery. Although protected by them, the bad sub-flow
is not aware of these recovery packets, and may unnecessarily
retransmit the old data packet (if lost) itself. FUSO currently
chooses such a simple approach to maintain the exact con-

gestion control behavior and add no aggressiveness, both on
individual sub-flows and the overall multi-path transport flow.
It needs no further coordination besides the original ACK
schemes in TCP between the sender and the receiver, but
may incur some redundant retransmissions. A naive solution
to eliminate the redundant retransmissions may be that the
receiver proactively generates ACKs for the original packets in
the bad sub-flow, upon receiving recovery packets from other
good sub-flows. However, this may cause adverse interaction
with congestion control. Specifically, the bad sub-flow’s sender
end may wrongly judge the path as in a good status and
increases its sending rate, which may exacerbate the loss.

In order to maintain the congestion control behavior and
eliminate the redundant retransmissions, it may need very
complex changes to the MCTCP/TCP protocols. The sender
and receiver must coordinate to decide whether/how it should
change each sub-flow’s congestion control behavior (e.g.,
increase/decrease how much to the cwnd), to cope with various
conditions, such as i) the proactive retransmission received
but the original packet lost, ii) the original packet received
but the proactive retransmission lost, iii) both packets lost,
iv) the proactive retransmission received before the original
packet, v) the original packet received before the proactive
retransmission, etc. The feasibility of such a solution and
how to design it still requires further study and is left as
our future work. FUSO currently chooses to trade a little
redundant retransmission (see §VI-B.2 and VI-B.3) for the
aforementioned simple and low-cost approach.

IV. FUSO ANALYSIS

We also use the same mathematical model as in §II-B to
analyze the timeout probability of a FUSO flow (denoted as
pRTO). We do not target an accurate mathematical analysis,
but only to use a simple model for a better understanding on
why FUSO can greatly decrease the FCT when encountering
packet loss.

As in §II-B, we consider one-way random loss for sim-
plicity. To analyze the impact of using multi-path, here we
assume that there are np parallel paths between the two
communication ends. We assume one of the np paths has a
loss probability of p. We consider that early retransmit has
been enabled.

Because FUSO conducts loss recovery based on MPTCP,
we first analyze pRTO of an MPTCP flow. Assuming that
MPTCP uses ns sub-flows, we start from calculating the
timeout probability of a sub-flow that traverses the lossy path
(denoted as ps_RTO). As in §II-B, we separately analyze the
probability of different loss conditions that cause timeout.
Apparently, the tail loss probability for the sub-flow (denoted
as ps_tail) is p, which equals the loss probability of the
last packet in the sub-flow. Letting the overall flow have
a size of x packets, then each sub-flow has x

ns
packets if

MPTCP equally distributes packets to each sub-flow. As such,
the retransmission loss probability for the sub-flow (denoted as
ps_retx) is 1−(1−p2)

x
ns

−1. Therefore, the timeout probability
of the sub-flow in MPTCP can be calculated as ps_RTO �
ps_tail + ps_retx. Then, assuming that the ns sub-flows are
randomly hashed to the np parallel paths, the probability of a
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sub-flow encountering no timeout is np−1
np

+ 1
np

(1− ps_RTO).
Because in MPTCP each sub-flow independently recovers its
packet loss, the flow will encounter an timeout if one of its
sub-flow encounters an timeout. As such, the overall timeout
probability of an MPTCP flow is

1−
(

np − 1
np

+
1
np

(1− ps_RTO)
)ns

.

Next, we analyze pRTO of a FUSO flow. Unlike MPTCP,
FUSO always uses good paths to recover packet loss on
bad paths. As such, timeout can only happen to a FUSO
flow when all its ns sub-flows go through the same lossy
path, otherwise the lost packets will be proactively recovered
through the sub-flow on the non-lossy path.6 The probability
of all the ns sub-flows are hashed to the same lossy path
is ( 1

np
)ns . Because all sub-flows have similar loss metrics

(Cl in §III-B.1) when they go through the same lossy path,
then, when FUSO conducts proactive loss recovery, we simply
assume that each sub-flow has a equal probability of 1

ns
to be

selected as the best path. Given that, there are two conditions
that a FUSO flow can encounter a timeout: i) First, packet
loss leads to timeout on one sub-flow, and its recovery packets
are transmitted through another sub-flow which, however, also
encounters timeout. The probability that the recovery packets
choose another sub-flow is 1− 1

ns
, and the probability that the

two sub-flows both encounter timeout approximates p2
s_RTO .7

Thus the probability of timeout due to the first condition is
(1 − 1

ns
)p2

s_RTO . ii) Second, packet loss leads to timeout on
one sub-flow, and its recovery packets are also transmitted
through this sub-flow. The probability that the recovery packets
choose the same sub-flow is 1

ns
. The timeout probability of

this sub-flow approximates ps_retx + p2, which is a little
different as in MPTCP. Specifically, since the recovery packets
are also transmitted on this sub-flow, the loss of the original
tail packet will no longer cause timeout. Timeout will only
happen if the original tail packet encounters a retransmission
loss, which probability is p2. Thus, the probability of timeout
due to the second condition is 1

ns
(ps_retx + p2). Therefore,

in summary, the overall timeout probability of a FUSO flow is(
1
np

)ns

·
((

1− 1
ns

)
p2

s_RTO +
1
ns

(ps_retx + p2)
)

The solid lines in Fig. 4 show the analyzed timeout proba-
bility of a 100KB flow using FUSO and MPTCP respectively.
There are three parallel paths between the flow sender and
receiver. One of the three paths has a one-way random packet
loss rate varying from 0.1% to 10%. For comparison, we also
draw the timeout probability of TCP flow which has been
analyzed before (§II-B). Results show that by proactive multi-
path loss recovery, FUSO can greatly reduce the timeout
probability by ∼104-103 compared with TCP under various
loss rates. As such, FUSO largely decreases the tail FCT.
MPTCP, however, increases the timeout probability compared

6For simplicity, here we simply assume that the path selection algorithm
(§III-B.1) can always help FUSO to pick up the right path for loss recovery.

7Note that the recovery packets will slightly affect the timeout probability
of the sub-flow that transmits them. For simplicity, we neglect this part in the
calculation under this condition.

Fig. 4. Timeout probability of TCP, MPTCP and FUSO flows. There are
three parallel paths between the flow sender and receiver. One of the three
paths has a random packet loss rate varying from 0.1% to 10%.

Fig. 5. Basic topology of the testbed.

to TCP. It is because that MPTCP uses more paths for a
single flow but each sub-flow conducts loss recovery by it
own. As such, an MPTCP flow has a bigger chance to hit the
lossy path and encounter a timeout.

We also conduct a testbed experiment to verify our analysis.
The testbed topology is shown in Fig. 5. We generate 107 flows
in total between sever H1 and H4, and manually incur
different random loss rate on path P1. More details about our
testbed settings can be found in §V-B and §VI. The dotted lines
in Fig. 4 show the testbed results. It shows that our analysis
well approximates the real timeout probability. Note that the
real timeout probability is a little higher than the analyzed
results when loss rate is high. It is because that we neglect
the whole window loss probability (pwin) when calculating
pRTO. While this affects little for TCP flow, in MPTCP and
FUSO, pwin becomes more significant when loss rate is high
because each sub-flow has a smaller size and it is even easier
to loose the whole window of packets when cwnd is reduced
after packet loss.

V. IMPLEMENTATION AND TESTBED SETUP

A. FUSO Implementation

We implemented FUSO in Linux kernel 3.18 with 827 lines
of code, building FUSO upon MPTCP’s latest Linux imple-
mentation (v0.90) [29].

FUSO Sender: We insert TRY_SEND_RECOVERIES() in
Algo. 1 into the following positions of the sender’s transport
kernel, to check whether a FUSO recovery packet should
be sent now: 1) in function tcp_sendmsg() after all the data
delivered from the application has been pushed into the send
buffer; 2) in function tcp_v4_rcv() after an ACK is received
and the transport status (cwnd, bytes in flight etc.) has been
changed.

In TRY_SEND_RECOVERIES(), FUSO detects that there is
currently no more new data from the up-layer application,
if the two conditions are both satisfied: i) the data delivered
from the application has all been pushed in the send buffer;
ii) the packets in the send buffer have all been sent. If a
multi-path loss recovery packet is allowed to be sent, FUSO
sender calls the function SEND_A_RECOVERY() and picks one
un-ACKed packets (in ascending order of sequence number)



CHEN et al.: FUSO FOR DCNs 1383

on the worst sub-flow, then copies and transmits it on the
best sub-flow. We utilize existing functions in MPTCP to
reconstruct the mapping of the recovery packet’s data-level
(i.e., flow-level) sequence number to the new sub-flow-level
sequence number. Also, FUSO sender remembers this packet
to ensure that each un-ACKed packet is protected for at most
once. In FUSO, both the formats of data packets and FUSO
recovery packets have no difference from those in the original
MPTCP protocol. The data-level sequence number (DSN) in
the existing Data Sequence Signal (DSS) option of MPTCP
header can notify the receiver how to map this recovery packet
into data-level data.

It is noteworthy that, besides the opportunistic retransmis-
sion introduced before, original MPTCP may also retransmit
the data packets originally delivered to one sub-flow through
other sub-flows under the following condition: if one sub-flow
is judged to be dead when it encounters certain number of
consecutive timeouts, all the packets once distributed to this
sub-flow will be re-injected to a special flow-level sending
buffer called “reinject queue”. Then MPTCP will redistribute
these packets to other sub-flows. This is a failover scheme to
deal with the case that some of its sub-flows completely fail.
However, it is too slow (after a sub-flow is dead) to provide
a low FCT under lossy conditions.

FUSO Receiver: The receiving process has already been
implemented in MPTCP’s original receiving logic, which
requires no other modification. According to the DSN in
the header option, the receiver will insert the multi-path loss
recovery packet in the corresponding position of the data-level
receive buffer, and complete the data transmission. Note that
in the current MPTCP’s Linux implementation, the receiver
only hands over packets to the data-level receive buffer which
are in-sequence in the sub-flow level, and buffers the packets
which are out-of-sequence (OoS) in the sub-flow level in
the sub-flow’s OoS queue. This implementation reduces the
reordering computation overhead, but may severely defer the
completion time of the overall MPTCP flow. Since packets
may be retransmitted by other sub-flows, those packets OoS
in sub-flow level may be in-sequence in the data level. As such,
in-sequence data-level packets may not be inserted to the data-
level receive buffer even when they arrive at the receiver,
because of being deferred by the former lost packets in the
same sub-flow. To solve this problem, we implement a minor
modification to current MPTCP’s receiving end implementa-
tion, which immediately copies the sub-flow-level OoS packets
directly to the MPTCP data-level receive buffer. This receiving
end modification is 34 lines of code.

B. Testbed Setup

We build a small 1Gbps testbed as shown in Fig. 5.
It consists of two 6-port ToR switches (ToR1, ToR2) and six
hosts (H1 ∼H6) located in the two racks below the ToR
switches. There are three parallel paths between the two racks,
emulating the multi-path DCN environment.

Each host is a desktop with an Intel E7300 Core2 Duo
2.66GHz CPU, 4GB RAM and 1Gbps NIC, and runs Ubuntu
14.04 64-bit with Linux 3.18.20 kernel. We use two servers to
emulate the two ToR switches. Each server-emulated switch

is a desktop with an Intel Core i7-4790 3.60GHz CPU,
32GB RAM, and 7 Intel I350 Gigabit Ethernet NICs (one
reserved for the management). All server-emulated switches
run Ubuntu 14.04 64-bit with Linux 4.4-RC7 kernel, with
ECMP enabled. Originally, current Linux kernel only support
IP-address-based (<src,dst> pair) ECMP [26] when forward-
ing packets. Therefore, we made a minor modification (8 lines
of code) to the switches kernel, thus to enable layer-4 port-
based ECMP [26] (<src,dst,sport,dport,protocol> pair) which
is widely supported by commodity switches and used in
production DCNs [3], [6], [16]. Each switch port buffer size
is 128KB. The basic RTT in our testbed is ∼280μs. ECN
is enabled using Linux qdisc RED module, with marking
threshold set to be 32KB according to the guidance by [7].
We set TCP minRTO to 5ms [1], [3]. These settings are used
in all the testbed experiments.

VI. EVALUATION

In this section, we use both testbed experiments and ns-2
simulations to show the following key points. 1) Our testbed
experiments show FUSO’s good performance under various
lossy conditions, including failure loss, failure & congestion
loss, and congestion loss. 2) We also use targeted testbed
experiments to analyze the impact of sub-flow number on
FUSO’s performance. 3) Our detailed packet-level simula-
tions confirm that FUSO scales to large topologies.

A. Schemes Compared

We compare the following schemes with FUSO in our
testbed and simulation experiments. For the simulations,
we implement all the following schemes in ns-2 [30] simulator.
For the testbed, we implement Proactive and Repflow [31] in
Linux, and directly use the source codes of other schemes.

TCP: The standard TCP acting as the baseline. We enable
the latest loss recovery schemes in IETF RFCs for TCP,
including SACK [28], SACK based recovery [18], Limited
Transmit [32] and Early Retransmission [19]. The rest of the
compared schemes are all built on this baseline TCP.

Tail Loss Probe (TLP) [22]: The latest single-path TCP
enhancement scheme using prober to accelerate loss recovery.
TLP transmits one more packet after 2 RTTs when no ACK is
received at the end of the transaction or when the congestion
window is full. This extra packet is a prober to trigger the
duplicate ACKs from the receiver before timeout.

TCP Instant Recovery (TCP-IR)8 [23]: The latest single-
path TCP enhancement scheme using both prober and redun-
dancy. It generates a coded packet for every group of packets
sent in a time bin, and waits for 1/4 RTT to send it out.
This coded packet protects a single packet loss in this group
providing “instant recovery”, and also acts like a prober as in
TLP. According to the authors’ recommendation [4], we set
the coding timebin to be 1/2 RTT and the maximum coding
block to be 16.

8TCP-IR has published its code [33] and we successfully compiled it to our
testbed hosts. However, after trying various settings, we are not able to get it
running on our testbed environment due to some unknown reasons. As such,
we evaluate TCP-IR only in simulation experiments.
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Fig. 6. Failure loss in the network or at the edge: 99th FCT (log scale) and timeout fraction of the latency-sensitive flows, while one network path is lossy
or all the edge paths are lossy. Path loss rate varies from 0.125% to 4%. (a) Net-loss: 99th FCT. (b) Net-loss: Timeout flows (%). (c) Edge-loss: 99th FCT.
(d) Edge-loss: Timeout flows (%).

Proactive [4]: A single-path TCP enhancement scheme to
accelerate loss recovery by duplicating every TCP data packet.
We have implemented Proactive in Linux kernel 3.18.

MPTCP [15]: The state-of-the-art multi-path transport
protocol. We use the latest Linux version of MPTCP imple-
mentation (v0.90 [29]), which includes the opportunistic
retransmission mechanism [14].

RepFlow [31]: A simple multi-path latency improvement
scheme by proactively transmitting two duplicated flows.
We have implemented RepFlow in the application layer
according to [31].

For all compared schemes, the initial TCP window is set
to 16 [3]. Note that for FUSO and MPTCP, the initial window
of each sub-flow is set to be 16

number of subflows , which
forms the same 16 initial window in total for a connection.
Unless specified otherwise, we configure 4 sub-flows for each
FUSO and MPTCP connection in the testbed experiments,
which offers the best performance for both methods in various
conditions. We compare the performance of FUSO/ MPTCP
using different number of sub-flows in §VI-B.4. FUSO’s path
selection parameters α, β (§III-B.1) are both set to be 0.5.

B. Testbed Experiments

Benchmark Traffic: Based on the code in [34], we develop
a simple client-server application. Each client sends requests
to some randomly chosen servers for a certain size of data,
with inter arrival time obeying the Poisson process. There
are two types of requests from the client, 1) latency-sensitive
queries with data sizes smaller than 100KB, and 2) background
requests with sizes larger than 100KB. All the requests’
sizes are sampled from two real data center workloads, web-
search [1] and data-mining [10]. Each client initiates 10 long-
lived transport connections (5 for latency-sensitive queries, and
5 for background requests) to each server, and round-robinly
distributes the requests on each connection (of their type) to
the server. We generate different loads through adjusting the
requests’ inter arrival time. All 6 hosts run both client and
server processes. We separately enable the various compared
schemes to serve the connections for latency-sensitive queries,
and use standard TCP for the rest of connections for back-
ground requests. Note that before all evaluations, we generate
100KB data to warmup each FUSO/MPTCP connection and
wait for an idle time to reset the initial window, thus to activate
all the sub-flows. We compare the request completion time9

of those latency-sensitive queries.

9We use ‘flow’ and ‘request’, ‘request completion time’ and ‘FCT’ inter-
changeably in §VI.

Emulating Failure Loss: We use netem [20], [21] to gen-
erate failure packet loss with different loss patterns and loss
rates. The network and edge loss are emulated by enabling
netem loss module on certain network interfaces (on the
switches or hosts). Two widely-used loss patterns are eval-
uated, random loss and bursty loss [35].

Due to space limitation, we only present the testbed results
under random loss using web-search workload. We have
evaluated FUSO under various settings, with different loss
models (random and bursty [35]) using different workloads
(web-search and data-mining), and FUSO consistently out-
performs other schemes (reduce the latency-sensitive flows’
99th percentile FCT by up to ∼86.2% under bursty loss
and data-mining traffic). All the experiment results are from
10 runs in total, with 15K flows generated in each run.

1) Failure Loss: We first show how FUSO can gracefully
handle failure loss in DCN. To avoid the interference of con-
gestion, no background traffic is injected, and we deploy the
clients on H4-H6 generating small latency-sensitive requests
(data size < 100KB) respectively to H1-H3 without edge con-
tention. We only focus on the failure loss in this experiment,
and later we will show how FUSO performs when failure and
congestion coexist. The requests are generated in an average
load of 10Mbps [1].

Loss in the network: We first evaluate the condition when
failure loss happens in the network, by deliberately generating
different loss rate for the path P1 in Fig. 5. Note that the two
directions of P1 both have the same loss rate. Fig. 6(a) and
Fig. 6(b) present the 99th percentile FCT and the fraction of
timeout ones among all the latency-sensitive flows. The results
show that FUSO maintains both very low 99th percentile FCT
(<2.4ms) and fraction of timeout flows (<0.096%), as the
path loss rate varies from 0.125% to 4%. FUSO reduces
the 99th percentile FCT by up to ∼82.3%, and the timeout
fraction up to 100% (no timeout occurs in FUSO), compared to
other schemes. The improvement is due to the multi-path loss
recovery mechanisms of FUSO, which can explore and utilize
good paths that are not lossy, and also makes the FCT depend
on the best path explored. Although MPTCP also explores
multiple paths, each of its paths normally has to recover loss by
itself (more details in §II-D). Therefore, its overall completion
time depends on the last completed sub-flow on the worst
path. Lacking an effective loss recovery mechanism actually
lengthens the tail FCT in MPTCP, as exploring multiple paths
actually increases the chance to hit the bad paths. RepFlow
offers a relatively better performance than other schemes
by excessively duplicating every flow. However, this way of
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redundancy is actually less effective than FUSO, because each
flow independently transmits data with no cooperative loss
recovery as in FUSO. Since there is still a big chance for
ECMP to hash the two duplicated flows into the same lossy
path, it makes RepFlow have an ∼32%-64.5% higher 99th

percentile FCT than FUSO. Proactive also behaves inferiorly,
suffering from similar problems as RepFlow. TLP performs
almost the same as TCP because it sacrifices the ability to
prevent timeouts in order to keep low aggressiveness.

Loss at the edge: We then evaluate the extreme condition
when severe failure loss happens at the edge, by deliberately
generating different loss rates for all the access links of
H4-H6. We try to investigate how FUSO performs when sub-
flows cannot leverage diversity among different physical paths.
Fig. 6(c) and Fig. 6(d) show the results. Even with all sub-
flows passing the same lossy path, FUSO still can maintain
a consistent low timeout fraction to be under 0.8% when the
loss rate is below 1%. However, the timeout fraction of other
approaches except RepFlow and Proactive exceeds 3.3% at the
same loss rate. As such, FUSO reduces the 99th percentile
FCT by up to ∼80.4% compared to TCP, TLP and MPTCP.
When loss rate exceeds 2%, FUSO still maintains the 99th

FCT under 12.7ms. Although all sub-flows traverse the same
lossy path in this scenario, the chance that all four of them
simultaneously hit the loss has been decreased. FUSO can
leverage the sub-flow which does not encounter loss currently
to help recover lost packets in the sub-flow which hits loss
at this moment. Due to the excessive redundancy, RepFlow
and Proactive perform the best in this scenario when loss rate
is high, but hurt the 99th FCT when the loss rate is low.
Later (§VI-B.3) we will show that this excessive load and the
non-adaptive redundancy ratio will substantially degrade the
performance of latency-sensitive flows, when the congestion
is caused by themselves such as in the incast [5] scenario.

2) Failure & Congestion Loss: Next we evaluate that how
FUSO performs with coexisting failure and congestion loss.
We generate a 2% random loss rate on both directions of
path P1, which is similar to a real Spine switch failure
case in production DCN [3]. We deploy the aforementioned
clients on the H4-H6 and configure them to generate small
latency-sensitive queries as well as background requests,
to the servers randomly chosen from H1-H3. This cross-rack
traffic [13], [36] ensures that all the flows have a chance going
through the lossy network path. We inject different traffic
load from light (0.1) to high (0.9), to investigate how FUSO
performs from failure-loss-dominated scenario to congestion-
loss-dominated scenario.

Results: Fig. 7 shows the results. Under conditions where
failure and congestion loss coexist, FUSO maintains both
very low average and 99th percentile FCT of latency-sensitive
flows, from light to high load. Compared to MPTCP, TCP
and TLP, FUSO reduces the average FCT by ∼28.2% -
47.1%, and the 99th percentile by ∼17.2%-80.6%. FUSO
also outperforms RepFlow by ∼10%-30.3% in average and
∼20.1%-44.8% in tail, due to two reasons: 1) the chance of
two replicated flows in RepFlow being hashed to the same
lossy path is non-negligible, and 2) excessive redundancy
RepFlow adds congestion when load is high. As for Proactive,

Fig. 7. Failure & congestion loss: Average and 99th FCT (log scale) of
latency-sensitive flows, and the average extra load of all FUSO flows. Each
flow’s extra load is calculated by the extra bytes incurred by FUSO divided
by the total bytes transmitted. (a) Avg FCT. (b) 99th FCT. (c) Extra load in
FUSO.

the replicated packets always go through the same path as
the original data packets, which makes them share the same
loss rate and further decrease its redundancy efficiency com-
pared to RepFlow. Moreover, the simple duplicating behaviour
extremely degrades its performance under heavy load. On the
contrary, FUSO’s proactive multi-path loss recovery helps
to recover the congestion and failure loss fast, meanwhile
remaining cautious to avoid adding aggressiveness. Even at
the high load of 0.9, FUSO maintains the average and tail
FCT to be below 4.5ms and 17.1ms, respectively. TCP behaves
inferiorly due to coexisting severe congestion and failure loss,
while MPTCP performs better in this case. TLP’s faster loss
recovery by adding moderate aggressiveness makes it perform
better than both TCP and MPTCP.

We show the average extra load of all FUSO flows
in Fig. 7(c). Each flow’s extra load is calculated by the
extra bytes incurred by FUSO divided by the total bytes
transmitted. The results show that FUSO’s fast loss recovery
behaviour can gracefully adapt to the network condition.
Particularly, when the load is low, FUSO generates relatively
more recovery packets (∼42% extra load) to proactively
recover the potential loss. Such relative high redundancy rate
does not affect the FUSO flows’ FCT, because that FUSO
only generates redundancy utilizing the opportunity when the
network is not congested (detected from spare cwnd) and
there is no more new data. As the congestion becomes severe,
FUSO naturally throttles the redundancy generation (down to
∼40% in 0.9 load) by strictly following the congestion control
behaviour. Later (§VI-B.3) we will show that FUSO generates
even lesser redundancy when the network is more congested.

3) Congestion Loss: Incast: Now, we focus on the conges-
tion loss at the edge which is a very challenging scenario for
FUSO, to investigate whether FUSO is cautious enough to
avoid adding congestion when there is no spare capacity in
the bottleneck link. We deploy a receiver application on H1
to simultaneously generate requests to a number of sender
applications deployed on H2-H6. After receiving the request,
each sender immediately responds with a 64 KB data using
the maximum sending rate. This traffic pattern, which is
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Fig. 8. Incast: Request completion time and the average extra load of all
FUSO flows. Each flow’s extra load is calculated by the extra bytes incurred
by FUSO divided by the total bytes transmitted. (a) Request completion time.
(b) Extra load in FUSO.

called incast [5], is very common in MapReduce-like [37]
applications. We use all physical sending hosts in our testbed
to emulate multiple senders [38]. We measure the completion
time when all the responses have been successfully received.
In this case we do not inject failure loss.

Results: Fig. 8(a) shows the request completion time as the
number of senders (i.e., fanout) grows. When the fanout is
below 44, FUSO, MPTCP, TCP and TLP behave similarly.
As studied before [24], [39], a small minRTO and appropriate
ECN setting can offer a fairly good performance for standard
TCP in the incast scenario. Because the total response size
equals 64KB×fanout, the completion time linearly grows as
the fanout increases. When fanout grows above 44, timeout
occurs in MPTCP, which leads to a sudden rise of completion
time. It is due to the relatively high burstiness caused by
multiple sub-flows. However, FUSO’s multi-path loss recovery
scheme compensates this burstiness and remains an approx-
imately linear growth of completion time in FUSO. The
performance begins to degrade for all methods when the
fanout exceeds 48. FUSO keeps performing the best, and
keeps the completion time below 51.2ms even when the fanout
becomes 70.

RepFlow and Proactive always take roughly twice the time
to complete the query even when fanout is low (e.g., <23),
because they duplicate every flow (or packet) and add a
certain excessive extra load to the network. As the fanout
becomes larger, many timeouts occur and significantly impair
the performance of them. For example, for a fanout of 30,
RepFlow and Proactive need ∼47ms and ∼58ms to complete
the request, respectively, while FUSO only needs less than
25ms. Although duplicating small flows can help to improve
their performance under some lossy cases, it is not adaptive
to complicated DCN environments, and even deteriorates the
performance especially when the network is congested by
the small flows themselves. On the contrary, Fig. 8(b) shows
that FUSO can gracefully adapt to the network condition and
throttle the extra load in such extremely congested scenarios.

4) Various Number of Sub-Flows: Now, we investigate the
impact of the number of sub-flows on FUSO’s performance.
The settings are the same as in the network loss experiment
in §VI-B.1. We compare FUSO with 1,2,4 and 8 sub-flows,

Fig. 9. Various number of sub-flows: 99th FCT (log scale) and timeout
fraction of the latency-sensitive flows, while one network path is lossy.
(a) 99th FCT. (b) Timeout flows (%).

denoted as FUSO1,2,4,8. Note that FUSO1 simply retrans-
mits the suspected lost packets in the same flow after the
original packets before standard TCP loss recovery begins,
without using multi-path.

Results: Fig. 9 shows the results. We can see that FUSO
behaves better as it explores more paths using more sub-
flows. Only adding redundancy without leveraging multi-path
diversity causes the inferior performance of FUSO1. FUSO4

can offer a fairly good performance that is very close to
FUSO8, which means 4 sub-flows is enough for our small
testbed with 3 parallel paths. On the contrary, MPTCP behaves
worse as the number of sub-flows grows, lagged by the last
completed sub-flow on the worst path (see §II-D).

C. Large-Scale Simulations

Simulation Settings: Besides testbed experiments, we also
use ns-2 [30] to build a larger 3-layer, 4-pod simulated Fat-
tree topology. The topology consists of 4 Spine switches and
4 pods below them, each containing 2 Aggregation and 2 ToR
switches. All switches have 4 40Gbps ports, and each ToR
switch has a rack of 8 10Gbps servers below. Each switch
has 1MB buffer per port, with ECMP and ECN enabled.
The whole topology contains 20 switches and 64 servers, i.e.,
the largest scale for detailed packet-level simulation that could
be finished in an acceptable time on our servers. The base
RTT without queueing is ∼240μs. Given that, the switches’
ECN threshold of access ports is set to be 300KB, and the
one of up-ports is set to be 1200KB [7]. We set the TCP
minRTO to be 5ms [3], [16]. The input traffic is generated the
same as in §VI-B.2, letting all the clients request both latency-
sensitive queries and background data from randomly chosen
servers. Besides web-search [1], we also evaluate another
empirical data-mining workload [10]. Both FUSO and MPTCP
use 8 sub-flows to adapt to the large topology. The results are
from 10 runs in total, with 32K flows generated in each run.

Empirical Failure Loss: To emulate the real condition in
production data centers, we randomly set 5% links to be
lossy. The loss rate of each lossy link is sampled from the
distribution measured in §II-A (Fig. 1(a)). Note that we have
excluded the part in the distribution with exceptionally high
loss rate (right most part in Fig. 1(a) with loss rate > 60%) for
sampling. It is because that standard TCP flows almost cannot
finish and often upper-layer applications operations are trig-
gered (e.g., requesting resources from other machines) under
such high loss rates. We randomly generate those lossy links at
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Fig. 10. Simulations under 10Gbps fat tree: Average and 99th FCT (log scale) of latency-sensitive flows from web-search and data-mining workloads. Lossy
links are randomly generated according to realistic measurements in §II-A. (a) Web-search: Avg FCT. (b) Web-search: 99th FCT. (c) Data-mining: Avg FCT.
(d) Data-mining: 99th FCT.

Fig. 11. Enabling loss recovery schemes for all flows under web-search workload simulation: Average FCT of small, middle and long flows. (a) Small flow
(0,100KB]. (b) Middle flow (100KB,10MB]. (c) Large flow (10MB,∞).

different locations including the edge and network, according
to the real location distribution10 in §II-A (Fig. 1(b)).

Results: The results in Fig. 10 confirm that FUSO can
gracefully scale to large topologies and complex lossy
conditions. Under all loads, the average FCT of FUSO
is ∼10.4% -60.3% lower than TCP, MPTCP, TLP and TCP-IR
in web search workload, and ∼4.1%-39.4% lower in data
mining workload. Also, the 99th percentile is ∼29.2%-87.4%
and ∼0%-87.9% lower in the two workloads respectively.
TCP-IR chooses a more aggressive loss recovery manner than
TLP. This improves the performance, but TCP-IR still has
∼29.2%-46.5% and ∼0%-6.1% higher 99th FCT than FUSO
under two workloads, respectively. Lacking multi-path makes
TCP-IR’s loss recovery less efficient, because the recovery
packets may be also dropped while traversing the same lossy
path as the former dropped data packets. Compared with
RepFlow and Proactive which use certain excessive redun-
dancy rate, FUSO still has up to ∼33.9% and ∼2.6% better
99th percentile FCT under the two workloads respectively,
due to the reasons discussed before. Because the simulated
topology has a much higher capacity in the fabric link (40G)
than the access link (10G), the congestion is significantly
alleviated compared to the small testbed topology in §VI-B.2.
Thus TCP performs better than MPTCP for small flows in
this scenario, because their performance depends more on the
failure loss.

VII. DISCUSSION

We discuss a few points here.
Generating Recovery Packets: FUSO follows the principle

of prioritizing new data transmission over its proactive loss
recovery. As such, FUSO avoids sacrificing throughput to
transmit redundant recovery packets ahead of new data, which
would increase the FCT.

10There are only 3 layers in our simulation topology, thus we merge the
portion of those lossy links at and above the 3rd layer in the real topology
into one layer in the simulated topology.

FUSO for Long Flows: Although we focus on how FUSO
improves the performance of small latency-sensitive flows in
§VI, FUSO is also applicable to all flows (including middle
and long flows).11 Long flows are typically bandwidth greedy
and cwnd limited. Therefore, the necessary condition for
proactive multi-path loss recovery in FUSO (when there is
no more new data to be sent and the flow has spare cwnd
slots) is only triggered at the end of the long flows. However,
when encountering a lossy path, the multi-path capability in
FUSO will also help the long flow to move traffic into a better
path, which still greatly improves the FCT. We enable FUSO
and other comparing schemes for all flows, and evaluate them
in the same large simulation as in §VI-C. Fig. 11 shows the
average FCT of different flows under we-search workload,
respectively. FUSO still performs the best for small flows.
Moreover, thanks to the multi-path mechanism, FUSO and
MPTCP both performs much better than other single-path
solutions for middle and long flows.

VIII. RELATED WORK

Besides the works [4], [13]–[15], [22], [23], [31] that we
have previously discussed in-depth, there is a rich literature
on the general TCP loss recovery (e.g., [18], [19], [32],
[40]), short flows’ tail FCT in both DCN (e.g., [41]–[43])
and Internet (e.g., [44], [45]), and utilizing multi-path in the
transport (e.g., [46]–[48]). Due to space limitation, we do not
review these works in details. The key difference between
FUSO and these works is that, to the best of our knowledge,
FUSO is the first work to address the long tail FCT of short
flows in DCN caused by failure-packet-loss-incurred timeout.
FUSO is also the first systematic work to utilize multi-path
diversity to conduct transport loss recovery in DCN.

It is noteworthy that several data centers have recently
deployed Remote Direct Memory Access (RDMA) [49], [50],
a complementary technique to TCP. It relies on Priority-

11Typically, small, middle and long flows are defined as flows with size of
(0,100KB], (100KB,10MB] and (10MB,∞), respectively [1], [34].
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based Flow Control (PFC) to remove congestion drops. How-
ever, RDMA would perform badly in face of failure-induced
loss (e.g., even a slight 0.1%) due to its simple go-back-N
loss recovery schemes [3]. FUSO is able to deal with both
congestion-induced loss and failure-induced loss, and works
for the widely used TCP in DCN [3], [6], [16]. We will study
how to apply the principle of FUSO to RDMA/PFC in the
future.

IX. CONCLUSION

The chase for ultra-low FCT in data center networks has
been a very active research area, and the solutions range from
better topology and routing designs, optical switching, flow
scheduling, congestion control, to protocol architectures (e.g.,
RDMA/PFC), etc. This paper adds an important thread to this
area, which is to properly leverage the inherent multi-path
diversity for transport loss recovery, to deal with both failure-
induced and congestion-induced packet loss in DCN. In our
proposed FUSO, when a multi-path transport sender suspects
loss on one sub-flow, recovery packets are immediately sent
over another sub-flow that is not or less lossy and has spare
congestion window slots. Our experiments show that the fast
yet cautious FUSO can decrease the tail FCT by up to ∼82.3%
(testbed) and ∼87.9% (simulation).
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