
2308 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

MP-RDMA: Enabling RDMA With Multi-Path
Transport in Datacenters

Guo Chen , Yuanwei Lu, Bojie Li , Kun Tan, Yongqiang Xiong, Peng Cheng ,
Jiansong Zhang, and Thomas Moscibroda

Abstract— RDMA is becoming prevalent because of its low
latency, high throughput and low CPU overhead. However,
in current datacenters, RDMA remains a single path transport
which is prone to failures and falls short to utilize the rich
parallel network paths. Unlike previous multi-path approaches,
which mainly focus on TCP, this paper presents a multi-path
transport for RDMA, i.e. MP-RDMA, which efficiently utilizes
the rich network paths in datacenters. MP-RDMA employs three
novel techniques to address the challenge of limited RDMA NICs
on-chip memory size: 1) a multi-path ACK-clocking mechanism to
distribute traffic in a congestion-aware manner without incurring
per-path states; 2) an out-of-order aware path selection mechanism
to control the level of out-of-order delivered packets, thus
minimizes the meta data required to them; 3) a synchronise
mechanism to ensure in-order memory update whenever needed.
With all these techniques, MP-RDMA only adds 66B to each
connection state compared to single-path RDMA. Our evaluation
with an FPGA-based prototype demonstrates that compared with
single-path RDMA, MP-RDMA can significantly improve the
robustness under failures (2×∼4× higher throughput under
0.5%∼10% link loss ratio) and improve the overall network
utilization by up to 47%.

Index Terms— Datacenter networks, RDMA, multi-path
transport, hardware-based transport.

I. INTRODUCTION

MODERN datacenter applications require high through-
put and low latency networks to meet the increas-

ing demands from customers. Compared with conventional

Manuscript received October 5, 2018; revised July 8, 2019; accepted
September 22, 2019; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor M. Schapira. Date of publication November 11, 2019;
date of current version December 17, 2019. This work was supported in
part by the National Natural Science Foundation of China under Grant
6187060280, in part by the Huawei Innovation Research Program, in part by
the Tencent Rhino-Bird Open Research Fund, and in part by the Fundamental
Research Funds for the Central Universities. The work of G. Chen was sup-
ported by the Science and Technology on Parallel and Distributed Processing
Laboratory (PDL). The preliminary version of this article was published in
the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2018. (Corresponding author: Guo Chen.)

G. Chen is with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha 410000, China (e-mail:
guochen@hnu.edu.cn).

Y. Lu is with Tencent, Shenzhen 518057, China (e-mail:
yuanweilu@tencent.com).

B. Li and K. Tan are with the Central Software Institute, Huawei
Technologies, Beijing 100036, China (e-mail: libojie2@huawei.com;
kun.tan@huawei.com).

Y. Xiong and P. Cheng are with Microsoft Research Asia, Beijing 100080,
China (e-mail: yqx@microsoft.com; pengc@microsoft.com).

J. Zhang is with Alibaba, Beijing 100000, China (e-mail: jian-
songzhang@live.com).

T. Moscibroda is with Microsoft Azure, Seattle, WA 98007 USA (e-mail:
moscitho@microsoft.com).

Digital Object Identifier 10.1109/TNET.2019.2948917

software transport, Remote Direct Memory Access (RDMA)
implements the entire transport logic in hardware network
interface card (NIC) and allows direct access to remote mem-
ory, mostly bypassing CPU. Therefore, RDMA provides ultra-
low latency (∼1μs) and high throughput (40/100Gbps) with
little CPU overhead. Nowadays, RDMA has been deployed
in datacenters at scale with RDMA over Converged Ether-
net (RoCE) v2 [2], [3]. Existing RDMA is a single path
transport, i.e., an RDMA connection only flows along one
network path1. This single path transport is prone to path
failures and also cannot utilize the rich parallel paths in
modern datacenters [5]–[7]. While many approaches have been
proposed to enhance TCP to support multi-path, none has
considered RDMA. In this paper, we propose a multi-path
transport for RDMA.

However, RDMA is completely implemented in NIC
hardware which has very limited computing resource and
on-chip memory (e.g., only a few mega-bytes). Although
NIC could upload local states in host memory, swapping
data between on-chip memory and host memory has a cost
and frequent swapping would significantly downgrades per-
formance [8], [9] (also see §II-C). As a consequence, the key
design goal for a multi-path RDMA transport is to minimize
the memory footprint, which incurs three challenges.

First, a multi-path transport should track the congestion
states on each path, so that it can perform congestion-aware
load distribution. However, these states grow linearly with
the number of sending paths. This may cause a considerable
memory overhead even when a modest number of paths are
used for one RDMA connection. For example, if we adopt
a multi-path transport similar to MPTCP [5], we may add
368 bytes if 8 sub-flows are used. 2 However, the size of these
extra states is already ∼50% more than the entire states of one
connection in current RoCE design. 3 As a result, significantly
fewer concurrent connections can be supported only using on-
chip memory, which leads to more frequent swapping and
downgrades the performance.

Second, multi-path will cause packets to arrive out-of-order
at the receiver. Consequently, the receiver needs additional
metadata to track whether a packet has arrived or not.
However, if the paths conditions vary greatly, the size of
the metadata could be large. Fig. 1 gives the 99.9% tail of

1In this paper, RDMA refers to RoCEv2 which is widely used in datacenters.
We note that RDMA in high-performance computing (i.e., InfiniBand RDMA)
has multi-path solutions [4]. However, the InfiniBand underlying network is
totally different from the datacenter Ethernet network. This paper aims to
design a multi-path transport for RDMA in datacenters (i.e., RoCEv2).

2Each sub-connection needs to maintain states including rcv_nxt,
snd_nxt, snd_una, snd_ssthresh, snd_cwnd, srtt, rttvar, rtt_seq,
map_data_seq, map_subseq, map_data_len, . . .

3Mellanox ConnectX Linux driver [10] maintains all the states of an RDMA
connection in a 256B mlx4_qp_context.

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6069-6869
https://orcid.org/0000-0002-7390-3548
https://orcid.org/0000-0003-4014-4757

CHEN et al.: MP-RDMA: ENABLING RDMA WITH MULTI-PATH TRANSPORT IN DATACENTERS 2309

Fig. 1. Out-of-order degree under different scenarios.

the out-of-order degree (OOD) 4 of a network under various
scenarios (more details in § VI-B.1). For example, consider
the case that one path has degraded to 1Gbps (e.g., due to
hardware failures caused link rate auto-negotiation [6], [11]),
while other paths remain at a normal speed of 40Gbps. If
a bitmap structure is used, the size of the bitmap would
be 1.2KB. If we naively use fewer bits, any packet with a
sequence number out of the range of the bitmap has to be
dropped. This would reduce the performance greatly as the
throughput is effectively limited by the slowest path. A core
design challenge is to keep high performance even if we can
only track very limited out-of-order packets.

Finally, the receiver NIC does not have enough memory to
buffer out-of-order packets but has to place them into host
memory as they arrive. Therefore, the data in host memory
may be updated out-of-order. This may cause a subtle issue
as some existing applications implicitly assume the memory
is updated in the same order as the operations are posted
[12]–[14]. For example, a process may use a WRITE operation
to update a remote memory, and then issues another WRITE
operation to set a dirty flag to notify a remote process. If
the second WRITE updates memory before the first WRITE,
the remote process may prematurely read the partial data and
fails. While retaining the memory updating order is trivial for
single-path RDMA, it requires careful design in multi-path
RDMA to avoid performance downgrade.

This paper presents MP-RDMA, the first multi-path
transport for RDMA that addresses all aforementioned chal-
lenges. Specifically, MP-RDMA employs a novel multi-path
ACK-clocking mechanism that can effectively do congestion-
aware packets distribution to multiple paths without adding
per-path states. Second, we design an out-of-order aware path
selection algorithm that pro-actively prunes slow paths and
adaptively chooses a set of paths that are fast and with similar
delays. This way, MP-RDMA effectively controls the out-of-
order level so that almost all packets can be tracked with a
small sized bitmap (e.g., 64 bits). Finally, MP-RDMA provides
an interface for programmers to ensure in-order memory
update by specifying a synchronise flag to an operation. A
synchronise operation updates memory only when all previ-
ous operations are completed. Therefore, two communication
nodes can coordinate their behaviors and ensure application
logic correctness.

We have implemented an MP-RDMA prototype in FPGA,
which can run at the line rate of 40Gbps. We evaluate
MP-RDMA in a testbed with 10 servers and 6 switches.
Results show that MP-RDMA can greatly improve the robust-
ness under path failures (2×∼4× higher throughput when
links have 0.5%∼10% loss rate), overall network utiliza-
tion (∼47% higher overall throughput) and average flow

4We define the out-of-order degree (OOD) here as the maximal difference
between the sequence number of an out-of-order arrived packet and the
expected packet sequence number.

completion time (up to 17.7% reduction) compared with
single-path RDMA. Moreover, MP-RDMA only consumes a
small constant (66B) amount of extra per-connection mem-
ory, which is comparable to the overhead (∼60B) added by
DCQCN [2] to enhance existing single-path RDMA.

In summary, we make the following contributions: 1) We
present MP-RDMA, the first transport for RDMA that supports
multi-path. 2) We have designed a set of novel algorithms to
minimize the memory footprint, so that MP-RDMA is suitable
to be implemented in NIC hardware. 3) We have evaluated
MP-RDMA on an FPGA-based testbed as well as large-scale
simulations.

II. BACKGROUND AND MOTIVATION

A. RDMA Background

RDMA enables direct memory access to a remote system
through NIC hardware, by implementing the transport entirely
in NIC. Therefore RDMA can provide low latency and high
throughput with little CPU involvement on either local or
remote end. RoCE v2 [15]–[17] introduces UDP/IP/Ethernet
encapsulation which allows RDMA to run over generic IP
networks. Nowadays, production datacenters, e.g. Microsoft
Azure and Google, have deployed RoCE at scale [2], [3],
[18]. Hereafter in this paper, unless explicitly stated otherwise,
we refer RDMA to RoCE v2.

In RDMA terminology, an RDMA connection is identified
by a pair of work queues, called queue pair (QP). A QP
consists of a send queue and a receive queue which are
both maintained on NICs. When an application initiates an
RDMA operation (also called a verb) to send or retrieve
data, it will post a work queue element (WQE) to NIC’s send
queue or receive queue, respectively. Moreover, to notify the
application for operation completion, there is also a completion
queue (CQ) associated with each QP. On completing a WQE,
a completion queue element (CQE) will be delivered to the
CQ. There are four commonly used verbs in RDMA: SEND,
RECV, WRITE and READ. Among these, SEND and RECV
are two-sided, meaning that SEND operation always requires a
RECV operation at the other side. READ and WRITE are one-
sided operations, meaning that applications can directly READ
or WRITE pre-registered remote memory without involving
remote CPU.

RDMA transport is message-based, i.e. an RDMA operation
is translated into a message for transmission. Then an RDMA
message will be divided into multiple equal-sized segments
which are encapsulated into UDP/IP/Ethernet packet(s). In
RoCEv2, all RDMA packets use an identical UDP destination
port (4791), while the UDP source port is arbitrary and varies
for different connections, which allows load-balancing. An
RDMA header is attached to every packet. The header contains
a packet sequence number (PSN) which provides a continuous
sequence number for the RDMA packets in a connection. At
the receiver side, RDMA messages are restored according to
PSN. Moreover, an RDMA receiver may generate an ACK or
a Negative ACK (NACK) to notify the sender for received or
lost packets.

RDMA is often deployed on top of a lossless network
provided by priority-based flow control (PFC) [19], [20].
Specifically, PFC employs a hop-by-hop flow control on traffic
with pre-configured priorities. With PFC, when a downstream
switch detects that an input queue exceeds a threshold, it will
send a PAUSE frame back to the upstream switch. While PFC

2310 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

can effectively prevent switches from dropping packets, the
back-pressure behavior may propagate congestion and slow
down the entire network. Thus, end-to-end congestion control
mechanisms have been introduced into RoCE. For example,
DCQCN [2] enhances RoCE transport with explicit conges-
tion notification (ECN) and quantized congestion notification
(QCN) [21] to control congestion.

B. Need for Multi-Path Transmission

Current RDMA transport mandates a connection to follow
one network path. Specifically, packets of one RDMA con-
nection use the same UDP source and destination ports. There
are two major drawbacks for such single-path transmission.

First, single path transmission is prone to path failures.
Some minor failures along the path can greatly affect the
performance of upper-layer applications. For example, silent
packet loss is a common failure in datacenter [11], [22].
Since RDMA transport is implemented in hardware which
typically lacks resources to realize sophisticated loss recov-
ery mechanism, it is very sensitive to packet loss. As a
result, a small loss rate (e.g., 0.1%) along the transmission
path can lead to dramatic RDMA throughput degradation
(e.g., <∼60%) [2].

Second, single path falls short to utilize the overall network
bandwidth. Equal Cost Multi-Path (ECMP) routing is currently
the main [3], [23], [24] method to balance RDMA traffic
among the datacenter network fabrics. Basically, ECMP hashes
different connections to different paths. However, as many
prior studies pointed out [3], [25], ECMP is not able to
balance traffic well when the number of parallel paths is large
[26], [27] due to hash collisions. While some part of the net-
work is highly congested, the rest may often have a low traffic
load, reducing the overall network utilization. Therefore, it is
important to spread traffic in finer granularity than flow among
multiple paths to achieve high network utilization [5], [25].

In literature, a set of mechanisms have been proposed to
distribute traffic in finer-grained ways to efficiently utilize the
rich network paths in datacenters [5]–[7], [25], [28]–[33].
Unfortunately, most of these previous arts only consider TCP
traffic, and none of them explicitly discuss RDMA (see §VII
for more discussions). As we will show in §II-C, RDMA is
quite different from TCP in many aspects. Therefore, in this
paper, we design the first multi-path transport for RDMA.

C. Challenges for Multi-Path RDMA

RDMA is implemented in NICs. But usually, on-chip mem-
ory in NIC is small and expensive. Populating large memories
in NIC hardware is very costly, since memory blocks require
many transistors and may occupy a large die area. Thus
NICs usually serve as a cache of host memory to store the
connection states. If a cache miss happens, RDMA NIC needs
to access the host memory via PCIe. Frequent cache misses
lead to NIC throughput degradation due to the PCIe bus
latency and the contention on the bandwidth. To illustrate
the impact of cache misses on application goodput, we use
4 clients with Mellanox ConnectX 3 Pro NICs to initiate
RDMA WRITEs to a single server and measure the total
goodput. Fig. 2 shows that when the number of concurrent
connections is larger than 256, application goodput would
drop sharply. This is because to perform WRITE operations,
the receiving NIC needs to access corresponding connection
states (QP context). When the number of connections is larger

Fig. 2. Goodput of concurrent MLNX CX3 Pro WRITEs.

Fig. 3. MP-RDMA packet header format. Fields with red bold text are
specific for MP-RDMA.

than 256, not all states can be stored in NIC’s memory.
With more concurrent connections, cache misses occur more
frequently. This result conforms with previous work [8], [9].
Thus, to avoid performance degradation caused by frequent
cache misses, the memory footprint for each RDMA connec-
tion should be minimized to support more connections in on-
chip memory. This key uniqueness of RDMA brings several
challenges for designing MP-RDMA as aforementioned (§I).

III. MP-RDMA DESIGN

A. Overview

MP-RDMA is a multi-path transport for RDMA while effec-
tively addresses the challenge of the limited on-chip memory
in NIC hardware. MP-RDMA employs a novel ACK-clocking
and congestion control mechanism to do congestion-
aware load distribution without maintaining per-path states
(§III-B). Moreover, it uses an out-of-order aware path selection
mechanism to control the out-of-order degree among sending
paths, thus minimizes the meta data size required for tracking
out-of-order packets (§III-C). Finally, MP-RDMA provides a
synchronise mechanism for applications to ensure in order host
memory update without sacrificing throughput (§III-D).

MP-RDMA assumes a PFC enabled network with RED [34]
ECN marking supported. It reuses most of the exist-
ing/reserved fields (with thin border) in the UDP and RoCE
v2 headers. It extends the existing headers by certain fields
(with thick border) (Fig. 3). MP-RDMA controls the trans-
mission paths of a packet by selecting a specific source port
in the UDP header and let ECMP pick up the actual path.
Since packets with the same source port will be mapped to
the same network path, we use a UDP source port to identify
a network path, which is termed as a Virtual Path (VP).
Initially, the sender picks a random VP for a data packet. Upon
receiving a data packet, the receiver immediately generates an
ACK which encodes the same VP ID (Echo VP ID field).
The ACK header carries the PSN of the received data packet
(SACK field) as well as the accumulative sequence number

CHEN et al.: MP-RDMA: ENABLING RDMA WITH MULTI-PATH TRANSPORT IN DATACENTERS 2311

at the data receiver (AACK field). ECN signal (ECE field) is
also echoed back to the sender.

The data of a received packet is placed directly into host
memory. For WRITE and READ operations, the original
RDMA header already embeds the address in every data
packet, so the receiver can place the data accordingly. But for
SEND/RECV operations, additional information is required to
determine the data memory placement address. This address
is in a corresponding RECV WQE. MP-RDMA embeds a
message sequence number (MSN) in each SEND data packet
to assist the receiver for determining the correct RECV WQE.
In addition, an intra-message PSN (iPSN) is also carried in
every SEND data packet as an address offset to place the data
of a specific packet within a SEND message.

Next, we zoom into each design component and elaborate
how they together can achieve high performance with a small
MP-RDMA on-chip memory footprint.

B. Multi-Path Congestion Control

As aforementioned, MP-RDMA performs congestion
control without maintaining per-path states, thus minimizing
on-chip memory footprint. MP-RDMA uses one congestion
window for all paths. The congestion control algorithm is
based on ECN. MP-RDMA decreases its cwnd proportionally
to the level of congestion, which is similar to DCTCP [2].
However, unlike DCTCP that estimates the level of conges-
tion by computing an average ECN ratio, MP-RDMA reacts
directly upon ACKs. As packets are rarely dropped in an
RDMA network, reacting to every ACK would be precise
and reliable. Moreover, it is very simple to implement the
algorithm in hardware. MP-RDMA adjusts cwnd on a per-
packet basis:

For each received ACK:

cwnd←
{

cwnd + 1/cwnd if ECN = 0
cwnd− 1/2 if ECN = 1

Note that on receiving an ECN ACK, cwnd is decreased by
1/2 segment instead of cutting by half.

MP-RDMA employs a novel algorithm called multi-path
ACK-clocking to do congestion-aware packets distribution,
which also allows each path to adjust its sending rate indepen-
dently. The mechanism works as follows: Initially, the sender
randomly spreads initial window (IW) wise of packets to
IW initial VPs. Then, when an ACK arrives at the sender,
after adjusting cwnd, if packets are allowed, they are sent
along the VP carried in the ACK. In §IV, detailed fluid
models and simulations show that with per-packet ECN-based
congestion control and multi-path ACK clocking, MP-RDMA
can effectively balance traffic among all sending paths based
on their congestion level, and also control the queue oscillation
gracefully. It is worth noting that MP-RDMA requires per-
packet ACK, which adds a tiny bandwidth overhead (< 4%)
compared to convention RDMA protocol.

MP-RDMA uses a similar way as TCP NewReno [35]
to estimate the inflight packets when there are out-of-order
packets being selectively acked. 5 Specifically, we maintain
an inflate variable, which increases by one for each received
ACK. We use snd_nxt to denote the PSN of the highest sent

5Alternatively, we could use a sender-side bitmap to track sacked packets.
But the memory overhead of this bitmap could be large for high-speed
networks due to its large BDP. For example, for 100Gbps network with 100μs
delay, the size of the bitmap can be as large as 1220 bits.

Fig. 4. Data structure to track OOO packets at the receiver.

packet and snd_una to denote the PSN of the highest accu-
mulatively acknowledged packet. Then the available window
(awnd) is:

awnd = cwnd + inflate− (snd_nxt− snd_una).

Once an ACK moves snd_una, inflate is decreased by
(ack_aack − snd_una). ack_aack denotes the accumulated
highest PSN of in-order packets ACKed by the receiver, and
snd_una will move to the latest ack_aack if its AACK field
is higher than current snd_una. The receiver will generate
ACK for each received packet, carrying both the AACK and
SACK fields. Note that this estimation can be temporarily
inaccurate due to the late arrival of the ACKs with SACK PSN
between the old snd_una and new snd_una. However, the mis-
estimation would be compensated once the late SACKs return.
Specifically, inflate will increase when those SACKs return
and the sender will kick out packets for all the under-predicted
ACKed packets before. For scenarios that ACKs or packets are
lost, MP-RDMA enters retransmission phase and resets inflate
to zero.

C. Out-of-Order Aware Path Selection

Out-of-Order (OOO) is a common outcome due to the paral-
lelism of multi-path transmission. This section first introduces
the data structure for tracking OOO packets. Then we discuss
the mechanism to control the network OOO degree to an
acceptable level so that the on-chip memory footprint can be
minimized.

1) Bitmap to Track Out-of-Order Packets: MP-RDMA
employs a simple bitmap data structure at the receiver to
track arrived packets. Fig. 4 illustrates the structure of the
bitmap, which is organized into a cyclic array. The head of
the array refers to the packet with PSN = rcv_nxt. Each
slot contains two bits. According to the message type, a slot
can be one of the four states: 1) Empty. The corresponding
packet is not received. 2) Received. The corresponding packet
is received, but not the tail (last) packet of a message. 3) Tail.
The packet received is the tail packet of a message. 4) Tail
with completion. The packet received is the tail packet of a
message that requires a completion notification.

When a packet arrives, the receiver will check the PSN
in the packet header and find the corresponding slot in the
bitmap. If the packet is the tail packet, the receiver will further
check the opcode in the packet to see if the message requires
a completion notification, e.g., SEND or READ response. If
so, the slot is marked as Tail with completion; Otherwise,
it is marked as Tail. For non-tail packets, the slots are simply
set to Received. The receiver continuously scans the tracking
bitmap to check if the head-of-the-line (HoL) message has
been completely received, i.e., a continuous block of slots are
marked as Received with the last slot being either Tail or Tail
with completion. If so, it clears these slots to Empty and moves
the head point after this HoL message. If the message needs
a completion notification, the receiver pops a WQE from the
receive WQ and pushes a CQE in the CQ.

2312 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

2) Out-of-Order Aware Path Selection: MP-RDMA
employs only limited slots in the tracking bitmap,
e.g., L = 64, to reduce the memory footprint in NIC
hardware. Therefore, if an out-of-order packet holds a PSN
larger than (rcv_nxt + L), the receiver has to drop this
packet, which hurts the overall performance. MP-RDMA
controls the degree of out-of-order packets (OOD) by a novel
path selection algorithm, so that most packets would arrive
within the window of the tracking bitmap. The core idea of
our out-of-order aware path selection algorithm is to actively
prune the slow paths and select only fast paths with similar
delay.

Specifically, we add one new variable, snd_ooh, which
records the highest PSN that has been sacked by an ACK. For
the sake of description, we define another variable snd_ool =
snd_ooh − Δ, where Δ ≤ L is a tunable parameter that
determines the out-of-order level of MP-RDMA. The algo-
rithm works as follows: When an ACK arrives at the sender,
the sender will check if the SACK PSN is lower than snd_ool.
If so, the sender reduces cwnd by one and this ACK is not
allowed to clock out a packet to the VP embedded in the ACK
header.

The design rationale is straightforward. We note that
snd_ooh marks an out-of-order packet that goes through the
fast path. In order to control the OOD, we need to prune all
slow paths that causes an OOD larger than Δ. Clearly, an ACK
acknowledges a PSN lower than snd_ool identifies such a
slow path with the VP in the header. Note that PSN alone
may not correctly reflect the sending order of a retransmitted
packet (sent later but with lower PSN). Therefore, to remove
this ambiguity, we explicitly tagged a bit in packet header to
identify a retransmitted packet and echoed back in its ACK
(ReTx in Fig. 3). For those ReTx ACKs, we simply regard
their data packets have used good paths.

New Path Probing: MP-RDMA periodically probes new
paths to find better ones. Specifically, every RTT, with a
probability p, the sender sends a packet to a new random VP,
instead of the VP of the ACK. This p balances the the chance
to fully utilize the current set of good paths and to find even
better paths. In our experiment, we set p to 1%.

D. Handling Synchronise Operations

As discussed in §II, NIC hardware does not have enough
memory to store out-of-order packets and has to place them
into host memory. One possible way is to allocate a separate
re-ordering buffer in host memory and temporarily store the
out-of-order packets there. When the HoL message is com-
pletely received, the NIC can copy the message from the re-
ordering buffer into the right memory location. This, however,
causes a signification overhead as a packet may traverse PCIe
bus twice, which not only consumes double PCIe bandwidth
resource but also incurs a long delay. We choose to directly
place out-of-order packets’ data into application memory. This
approach is simple and achieves optimal performance in most
cases. However, to support applications that rely on the strict
order of memory updates, e.g., key-value store using RDMA
WRITE operations [14], MP-RDMA allows programmers to
specify a synchronise flag on an operation, and MP-RDMA
ensures that a synchronise operation updates the memory only
after all previous operations are completed.

One straightforward approach is to delay a synchronise
operation until the initiator receives acknowledgements or data

Fig. 5. MP-RDMA window structure at the sender.

(for READ verbs) of all previous operations. This may cause
inferior performance as one additional RTT will be added
to every synchronise operation. We mitigate this penalty by
delaying synchronise operations only an interval that is slightly
larger than the maximum delay difference among all paths. In
this way, the synchronise operations should complete just after
all its previous messages with high probability. With the out-
of-order aware path selection mechanism (§III-C), this delay
interval can be easily estimated as

Δt = α ·Δ/Rs = α ·Δ/

(
cwnd

RTT

)
,

where Δ is the target out-of-order level, Rs is the sending
rate of the RDMA connection and α is a scaling factor. We
note that synchronise messages could still arrive before other
earlier messages. In these rare cases, to ensure correctness,
the receiver may drop the synchronise message and send a
NACK, which allows the sender to retransmit the message
later.

We note that the latest commodity RDMA NICs
(e.g., Mellanox ConnectX-5 [36]) can also maintain original
memory access order under out-of-order RDMA operations
(called OOO mode). Nevertheless, they do not target for multi-
path transport scenarios and their designs are not publicly
available.

E. Other Design Details and Discussions

Loss Recovery: For single-path RDMA, packet loss is
detected by the gap in PSNs. But in MP-RDMA, out-of-order
packets are common and most of them are not related to packet
losses. MP-RDMA combines loss detection with the out-of-
order aware path selection algorithm. In normal situations,
the algorithm controls OOD to be around Δ. However, if a
packet gets lost, OOD will continuously increase until it is
larger than the size of the tracking bitmap. Then, a NACK
will be generated by the receiver to notify the PSN of the
lost packet. Upon a NACK, MP-RDMA enters recovery mode.
Specifically, we store the current snd_nxt value into to a
variable called recovery and set snd_retx to the NACKed
PSN (Fig. 5). In the recovery mode, an incoming ACK clocks
out a retransmission packet indicated by snd_retx, instead of
a new packet. If snd_una moves beyond recovery, the loss
recovery mode ends.

There is one subtle issue here. Since MP-RDMA enters
recovery mode only upon bitmap overflow, if the application
does not have that much data to send, RTO is triggered. To
avoid this RTO, we adopt a scheme of FUSO [22] that early
retransmits unacknowledged packets as new data if there is no
new data to transmit and awnd allows. In rare case that the
retransmissions are also lost, RTO will eventually fire and the
sender will start to retransmit all unacknowledged packets.

Burst Control: Sometimes for a one returned ACK,
the sender may have a burst of packets (≥2) to send, e.g.,
after exiting recovery mode. If all those packets are sent to the
ACK’s VP, the congestion may deteriorate. MP-RDMA forces
that one ACK can clock out at most two data packets. The rest
packets will gradually be clocked out by successive ACKs.

CHEN et al.: MP-RDMA: ENABLING RDMA WITH MULTI-PATH TRANSPORT IN DATACENTERS 2313

If no subsequent ACKs return, these packets will be clocked
out by a burst_timer to random VPs. The timer length is set
to wait for outstanding packets to be drained from the network,
e.g. 1/2 RTT.

Path Window Reduction: If there is no new data to transfer,
MP-RDMA gracefully shrinks cwnd and reduce the sending
rate accordingly following a principle called “use it or lose
it”. Specifically, if the sender receives an ACK that should
kick out a new packet but there is no new data available,
cwnd is reduced by one. This mechanism ensures that all
sending paths adjust their rates independently. If path window
reduction mechanism is not used, the sending window opened
up by an old ACK may result in data transmission on an
already congested path, thus deteriorating the congestion.

Connection Restart: When applications start to transmit
data after idle (e.g. 1 RTO), MP-RDMA will restart from IW
and restore multi-path ACK clocking. This is similar to the
restart after idle problem in TCP [37].

Interact With PFC: With our ECN-based end-to-end con-
gestion control, PFC will seldom be triggered. If PFC pauses
all transmission paths [2], [3], MP-RDMA will gradually stop
sending since no data packet arrives at the receiver and no
ACK returns. When PFC resumes, ACK clocking will be
restarted. If only a subset of paths are paused by PFC, those
paused paths will gradually be eliminated by the OOO-aware
path selection due to their longer delay. We have confirmed
above arguments through simulations. We omit the results here
due to space limitation.

IV. FLUID MODEL ANALYSIS OF MP-RDMA
CONGESTION CONTROL

We develop a fluid model for MP-RDMA congestion con-
trol. For clarity, we first establish a single-path model for MP-
RDMA to show its ability to control the queue oscillation.
Then a multi-path model is given to demonstrate its ability
in balancing congestion among multiple paths. We assume
all flows are synchronized, i.e. their window dynamics are
in phase. This fluid model only focuses on the congestion
control algorithm in MP-RDMA, and we assume that OOO
path selection and synchronise mechanism are not triggered.

A. Single-Path Model

Consider N long-lived flows traversing a single-bottleneck
link with capacity C. The following functions describe the
dynamics of W (t) (congestion window), q(t) (queue size).
We use R(t) to denote the network RTT , F (t) to denote
the ratio of ECN marked packets in the current window of
packets. d is the propagation delay. We further use R∗ = d +
average_queue_length/C to denote the average RTT. MP-
RDMA tries to strictly hold the queue length around a fixed
value, thus R∗ is fixed:

dW

dt
=

1− F (t−R∗)
R(t)

− W (t)
2R(t)

F (t− R∗) (1)

dq

dt
= N

W (t)
R(t)

− C (2)

R(t) = d +
q(t)
C

(3)

Eq. (1) models the flow’s window dynamics, which consists of
the increase and the decrease term. Eq. (2) models the queue
evolution on the bottleneck link, where N W (t)

R(t) is the input

Fig. 6. Single-path fluid model simulation results.

rate and C is the service rate. Eq. (3) models the RTT which
is sum of the propagation delay and the queuing delay.

The fix point of Eq. (1) is: W = 2(1−F)
F . Eq. (2) gets that

q(t) = NW (t)−CR(t)+k, where k is an arbitrary constant.
Let k = 0 and combine Eq. (2) and (3), which gives:

q =
NW

2
− Cd

2
=

N(1− F)
F

− Cd

2
(4)

MP-RDMA requires RED marking at the switch [34], which
gives the following ECN marking function:

F =

⎧⎪⎪⎨
⎪⎪⎩

0 if q � Kmin

Pmax
q −Kmin

Kmax−Kmin
if Kmin<q≤Kmax

1 if q > Kmax

(5)

Combining Equation (4) and (5) yields the fix point solution
(q, W, F).

We use NS3 [38] simulations to validate our analysis.
8 flows each with output rate 10Gbps, compete for a 10Gbps
bottleneck link. RTT is set to 100μs. We test three RED
settings, i.e., (Kmin, Kmax, Pmax) = (20, 200, 0.8),
(Kmin, Kmax, Pmax) = (20, 200, 0.2), and
(Kmin, Kmax, Pmax) = (10, 50, 0.8). Fig. 6 compares the
simulation results with the theory value calculated according
to our fluid model.

We can see that our model has well matched the actual
queue length under various settings. Moreover, MP-RDMA
achieves a stable queue with very small oscillation, with
proper RED settings (i.e., there is enough gap between Kmin
and Kmax). We found that with smaller difference between
Kmin and Kmax, the queue oscillation would be larger. This
is because when the ECN marking curve is steep, the marking
process is not that continuous. It is easy to see that if Kmin =
Kmax (which is the marking function used in DCTCP),
as MP-RDMA doesn’t use any history ECN information, MP-
RDMA can be modeled as a per-packet case of DCTCP with
g = 1, which has large queue oscillation [39]. The accurate
stability analysis requires complicated mathematical tools [39],
which is beyond the scope of this paper.

We have also compared the queue oscillation of our
MP-RDMA with DCTCP and TCP. For DCTCP, we use the
recommended settings in the paper (g = 1/16 and K = 40).
For TCP, we use two ECN marking schemes, i.e., Kmin =
Kmax = 40 as in DCTCP (denoted as TCP Instant-Mark) and
standard RED with (Kmin, Kmax, Pmax) = (20, 200, 0.8)
as in MP-RDMA (denoted as TCP RED). Fig. 7 shows the
results in the same simulation scenario before. Among all the
schemes, MP-RDMA has the smallest queue oscillation. This
is benefited from MP-RDMA’s per-packet cwnd adjustment
behavior which is more like a continuous process than other
schemes’ per-RTT cwnd adjustment.

2314 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Fig. 7. Single-path queue oscillation compared with DCTCP and TCP.

B. Multi-Path Model

Now we develop the multi-path model. Consider an
MP-RDMA flow k. Let V Pki denote ith VP of flow k.
We assume V Pki has a virtual cwnd denoted by wki, which
controls the number of packets on V Pki. And the total cwndk

is given as cwndk =
∑

i wki. We use � to denote the fraction
part of cwndk, i.e. � = cwndk − �cwndk�. We assume � has
a uniform distribution from 0 to 1 (denoted as U [0, 1)). 6

An ECN ACK from V Pki will reduce cwndk by 1/2
segment. There could be two situations: If � ≥ 1/2, a new
packet can still be clocked out on path V Pki; otherwise, after
reduction, the new cwndk will prevent a packet from sending
to V Pki. Since � is subject to U(0, 1), an ECN ACK reduces
wki by one with probability 50%. On the other hand, a non-
ECN ACK increases cwndk by 1/cwndk. If the growth of
cwndk happens to allow one additional packet, V Pki would
get two packets. As � is subject to U(0, 1), such chance would
be equal for each incoming non-ECN ACK, i.e. 1/cwndk.
In other words, a non-ECN ACK increases wki by one with
probability 1/cwndk.

Based on the above analysis, we can establish the fluid
model for our multi-path congestion control. Consider N
flows, each flow distributes their traffic to Mv virtual paths,
which are mapped onto Mp physical paths. We use Path(kj)
to denote the set of flow k’s virtual paths that are mapped
onto physical path j. Rki and Fki denote the flow k’s RTT
and ECN marking ratio on the ith VP, respectively. Similar
to the single-path, we have the following multi-path fluid
model:

(k = 1, 2, . . . , N ; i = 1, 2, . . . , Mv; j = 1, 2, . . . , Mp)

dwki

dt
=

wki(t)
cwndk(t) ∗Rki(t)

[1− Fki(t−R∗
ki)]

− wki(t)
2Rki(t)

Fki(t−R∗
ki) (6)

dqj

dt
=

N∑
k=1

∑
i∈Path(kj)

wki(t)

Rj(t)
− Cj (7)

Rj(t) = dj +
qj(t)
Cj

(8)

Eq. (6) models the kth flow’s window dynamics on its ith
virtual path. Eq. (7) models the queue evolution on each
physical path, where

∑N
k=1

∑
i∈Path(kj) wki(t)/Rj(t) is the

input rate on the jth physical path and Cj is its service rate.
Eq. (8) models the RTT on each physical path.

6We note that this assumption cannot be easily proven as the congestion
window dynamics are very complicated, but our observation on both testbed
and simulation experiments verified the assumption. Later we will show that
based on this assumption, our experiments and theoretical analysis results
match each other very well.

Eq. (6) yields the fix point solution:

Fki =
2

cwndk + 2
(9)

As Fki only depends on the total cwndk , this indicates that
each flow’s marking ratio on each VP will be the same.
In other words, MP-RDMA can balance a flow’s ECN
marking ratio among all its virtual paths regardless of
their physical mapping and their RTTs, capacities and
RED marking curves. Furthermore, since the VPs which
are mapped to the same physical path experience the same
ECN RED marking function, their marking ratio should be the
same which equals the physical path’s marking ratio. As such,
the marking ratio on all the physical paths that a flow used
should be the same. In datacenters where all equal-cost paths
have same capacities and RED marking curves, MP-RDMA
can balance the load among all the parallel paths.

Since all flows use the same Mp physical paths, it is easy
to derive that all flows’ ECN marking ratio on all VPs are the
same. As such, along with Eq. (9), we get

cwndk1 = cwndk2 , for any k1, k2 ∈ 1, . . . , N (10)

In fact, above equation is valid for any two flows k1 and k2

if there exists a VP i1 of flow k1 and a VP i2 of flow k2 that
i1 and i2 are mapped to the same physical path. This indicates
that all MP-RDMA flows that compete the same path will
converge to the same stable throughput.

We now try to derive the exact fix point solution of
(q, F, cwnd) on each path in terms of each path’s RTT,
capacity and RED parameters. Similar as before, from Eq. (7)
and (8), the queue can be calculated as:

qj =

N∑
k=1

∑
i∈Path(kj)

wki(t)

2
− Cjdj

2
(11)

Combining Eq. (9), (11) and the path’s RED marking
function in Eq. (5), we get

2
cwndk + 2

= Pmaxj

N�

k=1

�

i∈P ath(kj)
wki(t)

2 − Cjdj

2 −Kminj

Kmaxj −Kminj

(12)

Since
∑N

k=1 cwndk =
∑N

k=1

∑Mp

j

∑
i∈Path(kj) wki(t),

combining with Eq. (10), we can have the fix point solution
of (q, F, cwnd).

We use simulations to validate our conclusion.
10 MP-RDMA connections are established. Each sends
at 40Gbps among 8 VPs. The virtual paths are mapped
randomly onto 4 physical paths. The network base RTT of
each path is set to 16μs. We test three different network
settings with C1,2,3,4 = (20G, 40G, 60G, 80G) Pmax1,2,3,4 =
(0.2, 0.4, 0.6, 0.8), C1,2,3,4 = (20G, 40G, 60G, 80G)
Pmax1,2,3,4 = (0.8, 0.8, 0.8, 0.8) and C1,2,3,4 =
(80G, 80G, 80G, 80G) Pmax1,2,3,4 = (0.8, 0.8, 0.8, 0.8),
respectively. Also, we test two VP mapping conditions
with each flow has 8 VPs and 2 VPs respectively. Fig. 8
and 9 show the ECN marking ratio and the queue length
of the 4 physical paths and the cwnd of each flow under
8 VP and 2 VP conditions, respectively. Results show that
the ECN marking ratio, queue length and cwnd all match
well to the theory values calculated from our fluid model.

CHEN et al.: MP-RDMA: ENABLING RDMA WITH MULTI-PATH TRANSPORT IN DATACENTERS 2315

Fig. 8. Multi-path fluid model simulation results. Each flow uses 8 virtual paths.

Fig. 9. Multi-path fluid model simulation results. Each flow uses 2 virtual paths.

Moreover, the results have verified our conclusion that all
paths will converge to the same ECN marking ratio, and all
flows will converge to the same throughput (i.e., same cwnd).

V. IMPLEMENTATION

A. FPGA-Based Prototype

We have implemented an MP-RDMA prototype using
Altera Stratix V D5 FPGA board [40] with a PCIe
Gen3 x8 interface and two 40G Ethernet ports. Fig.10 shows

the overview of the prototype architecture. There are two major
components: 1) MP-RDMA transport logic, and 2) MP-RDMA
library. The entire transport logic is implemented on FPGA
with ClickNP framework [41]. We have developed 14 ClickNP
elements with ∼2K lines of OpenCL code. Applications call
MP-RDMA library to issue operations to the transport. FPGA
directly DMAs packet data from/to the application buffer via
PCIe.

Table I summarizes all extra states incurred per connec-
tion by MP-RDMA for multi-path transport compared to

2316 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Fig. 10. System architecture.

TABLE I

MP-RDMA STATES

existing RoCE v2. Collectively, MP-RDMA adds additional
66 bytes. This extra memory footprint is comparable to other
single-path congestion control proposals to enhance RoCE v2.
For example, DCQCN [2] adds ∼60 bytes for its ECN based
congestion control.

B. Validation

We now evaluate the basic performance of the FPGA-based
prototype. We measure the processing rate and latency for
sending and receiving under different message sizes. Specifi-
cally, the sending/receiving latency refers to the time interval
between receiving one ACK/data packet and generating a new
data/ACK packet.

To measure the processing rate for sending logic, we use one
MP-RDMA sender to send traffic to two MP-RDMA receivers,
creating a sender bottleneck, vice versa for measuring the
receiving logic. As shown in Fig.11, our implementation
achieves line rate across all message sizes for receiving.
For sending, when message size is smaller than 512 bytes,
the sender cannot reach the line rate. This is because sender
logic is not fully pipelined due to memory dependencies. How-
ever, our sending logic processing rate is still 10.4%∼11.5%
better than commodity Mellanox RDMA NIC (ConnectX-
3 Pro) [42], [43]. When message size is larger, i.e. >512B,
the sender logic can sustain the line-rate of 40Gbps. The
prototype also achieves low latency. Specifically, the sending
and receiving latency is only 0.54μs and 0.81μs for 64B
messages respectively.

Fig. 11. Prototype ability.

Fig. 12. Testbed topology.

VI. EVALUATION

In this section, we first evaluate MP-RDMA’s overall
performance. Then, we evaluate properties of MP-RDMA
algorithm using a series of targeted experiments.

Testbed Setup: Our testbed consists of 10 servers located
under two ToR switches as shown in Fig.12. Each server
is a Dell PowerEdge R730 with two 16-core Intel Xeon
E5-2698 2.3GHz CPUs and 256GB RAM. Every server has
one Mellanox ConnectX-3 Pro 40G NIC as well as an FPGA
board that implements MP-RDMA. There are four switches
connecting the two ToR switches forming four equal-cost
cross-ToR paths. All the switches are Arista DCS-7060CX-
32S-F with Trident chip platform. The base cross-ToR RTT
is 12μs (measured using RDMA ping). This means the
bandwidth delay product for a cross-ToR network path is
around 60KB. We enable PFC and configure RED with
(Pmax, Kmin, Kmax) = (1.0, 20KB, 20KB) as it provides
good performance on our testbed. The initial window is set
to be one BDP. We set Δ = 32 and the size of the bitmap
L = 64.

A. Benefits of MP-RDMA

1) Robust to Path Failure:
a) Lossy paths: We show that MP-RDMA can greatly

improve RDMA throughput in a lossy network [11].
Setup: We start one RDMA connection from T0 to T1,

continuously sending data at full speed. Then, we manually
generate random drop on Path 1, 2 and 3. We leverage the
switch built-in iCAP (ingress Content-Aware Processor) [44]
functionality to drop packets with certain IP ID (e.g., ID mod
100 == 0). We compare the goodput between MP-RDMA
and single-path RDMA (DCQCN). Each result is the average
of 100 runs.

Results: Fig.13(a) illustrates that MP-RDMA always
achieves near to optimal goodput (∼38Gbps excluding header
overhead) because it always avoids using lossy path. Specif-
ically, the credits on lossy paths are gradually reduced and
MP-RDMA moves its load to Path 4 (good path). However,
DCQCN has 75% probability to transmit data on lossy paths.
When this happens, DCQCN’s throughput drops dramatically
due to its go-back-N loss recovery mechanism. Specifically,
the throughput of the flow traversing lossy path drops to
∼10Gbps when the loss rate is 0.5%, and drops to near
zero when loss rate exceeds 1%. This conforms with the

CHEN et al.: MP-RDMA: ENABLING RDMA WITH MULTI-PATH TRANSPORT IN DATACENTERS 2317

Fig. 13. MP-RDMA robustness.

results in [2], [45]. As a result, DCQCN can achieve only
∼17.5Gbps average goodput when loss rate is 0.5%. When
the loss rate exceeds 0.5%, DCQCN achieves only ∼25%
average goodput compared with MP-RDMA. Improving the
loss recovery mechanism (e.g., [45]) is a promising direction to
further improve the performance of MP-RDMA and DCQCN,
but it is not the focus of this paper.

b) Quick reaction to link up and down:: We show that
MP-RDMA can quickly react to path failure and restore the
throughput when failed paths come back.

Setup: We start one MP-RDMA connection from T0 to
T1 and configure each path to be 10Gbps. At time 60s, 120s,
and 180s, P1, P2, and P3 are disconnected one by one. At
time 250s, 310s, and 370s, these paths are restored to healthy
status one by one.

Results: Fig.13(b) shows that, upon each path failure,
MP-RDMA quickly throttles the traffic on that path, mean-
while fully utilizes other healthy paths. This is because there
are no ACKs returning from the failed paths which leads to
zero traffic on those paths. While the ACK clocking for healthy
paths is not impacted, those paths are fully utilized and are
used to recover the lost packets on failed paths. When paths
are restored, MP-RDMA can quickly fully utilize the newly
recovered path. Specifically, for each restored path, it takes
only less than 1s for this path to be fully utilized again. This
is benefited from the path probing mechanism of MP-RDMA,
which periodically explores new VPs and restores the ACK-
clocking on those paths.

2) Improved Overall Performance: Now, we show that with
multi-path enabled, the overall performance can be largely
improved by MP-RDMA.

a) Small-scale testbed: Now we evaluate the throughput
performance on our testbed.

Setup: We generate a permutation traffic [5], [25], where
5 servers in T0 setup MP-RDMA connects to 5 different
servers in T1 respectively. Permutation traffic is a common
traffic pattern in datacenters [2], [3] and in the following,
we use this pattern to study the though-put, latency and out-
of-order behavior of MP-RDMA. We compare the overall
goodput (average of 10 runs) of all these 5 connections of
MP-RDMA with DCQCN.

Results: The results show that MP-RDMA can well utilize
the link bandwidth, achieving in total 150.68Gbps goodput
(near optimal excluding header overhead). Due to the coarse-
grained per-connection ECMP-based load balance, DCQCN
only achieves in total 102.46Gbps. MP-RDMA gains 47.05%
higher application goodput than DCQCN. Fig.14(a) shows the
goodput of each RDMA connection (denoted by its originated
server ID) in one typical run. The 5 flows in MP-RDMA fairly
share all the network bandwidth and each achieves ∼30Gbps.
However, in DCQCN, only 3 out of 4 paths are used for

Fig. 14. Overall throughput compared with DCQCN.

transmission while the other one path is idle, which leads to
much lower (<20Gbps) and imbalanced throughput.

b) Large-scale simulation on throughput: Now we eval-
uate throughput performance at scale with NS3 [38].

Setup: We build a leaf-spine topology with 4 spine switches,
32 leaf switches and 320 servers (10 under each leaf). The
server access link is 40Gbps and the link between leaf and
spine is 100Gbps, which forms a full-bisection network. The
base RTT is 16us. For the single-path RDMA (DCQCN),
we use the simulation code and parameter settings provided
by the authors. We use the same permutation traffic [5], [25]
as before. Half of the servers act as senders and each sends
RDMA traffic to one of the other half servers across different
leaf switches. In total there are 160 RDMA connections. For
MP-RDMA, the ECN threshold is set to be 60KB.

Results: Fig.14(b) shows the goodput of each RDMA
connection. MP-RDMA achieves much better overall perfor-
mance than DCQCN with ECMP. To be specific, the average
throughput of all servers of MP-RDMA is 34.78% better than
DCQCN. Moreover, the performance across multiple servers
is more even in MP-RDMA, where the lowest connection
throughput can still achieve 32.95Gbps. However, in DCQCN,
many unlucky flows are congested into a single path, leading
to a very low throughout (e.g., <15Gbps) for them.

c) Large-scale simulation on FCT: Setup: We use the
same leaf-spine topology and generate flow size according to
a web search workload [46]. The source and destination of
each flow are randomly picked from all the servers. We further
assume that flows arrive according to a Poisson process and
vary the inter-arrival time of flows to form different levels of
load.

Results: In this experiment, at start up, each connection
uses 54 virtual paths. As time goes by, a long flow will
result in using about 60∼70 virtual paths. Fig. 15 shows
the normalized FCT performance. For average FCT, MP-
RDMA is 6.0%∼17.7% better than DCQCN. For large flows
(>10MB), throughput is the dominate factor. As MP-RDMA
avoids hash collision, they achieve 16.7%∼77.7% shorter FCT
than DCQCN. We omit the figure due to space limitation. For
small flows (<100KB), MP-RDMA also achieves a little bit
better FCT (3.6%∼13.3% shorter) than DCQCN [Fig. 14(b)].
This advantage is from finer grained load balance and accurate
queue length control of congestion control (§IV) in MP-
RDMA.

B. MP-RDMA Deep-Dive

1) OOO-Aware Path Selection: Now, we show
MP-RDMA’s OOO-aware path selection algorithm can
well control the OOO degree, and achieve good application
throughput.

Setup: We use the same traffic as in §VI-A.2, and
measure the OOO degrees in three different scenarios:

2318 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Fig. 15. FCT performance compared with DCQCN.

Fig. 16. Out-of-order control algorithm performance.

1) Normal, in which all paths RED marking
parameters are configured as (Pmax, Kmin, Kmax) =
(1.0, 20KB, 20KB); 2) ECN mis-config, in which
the RED of path 4 is mis-configured as
(Pmax, Kmin, Kmax) = (1.0, 240KB, 240KB);
3) link-degradation, in which path 4 degrades from 40Gbps
to 1Gbps due to failure caused auto-negotiation.

Results: First we set bitmap length L to infinite to cover
the maximum OOD. Then, we evaluate how MP-RDMA can
control the OOD to different extent with different Δ. Fig. 16(a)
shows the 99.9th percentile of OOD using different Δ under
various scenarios. OOO-aware path selection can well control
the OOD. Specifically, compared to MP-RDMA without OOO
control, 7 Δ = 32 can effectively reduce the OOD 99.9th
by ∼5× and ∼50× under ECN mis-configuration and link-
degradation respectively. A proper Δ can control the OOD to
a small range, which means that we can use a very small L
in practice under various network conditions.

Next, we consider a bitmap with L = 64. We set Δ = 32
correspondingly. Fig. 16(b) shows the throughput normalized
to the ideal case when all connections fairly share the full
bandwidth. With OOO control, in ECN mis-config case, MP-
RDMA achieves optimal throughput. Even in more extreme
link-degradation case, the overall application throughput is
only 3.94% less than the optimal. However, if MP-RDMA
uses the same L = 64 bitmap but without OOO control, its
throughput significantly degrades by 25.1% and 67.5% under
these two cases respectively, due to severe OOO.

2) Congestion-Aware Path Selection: Now, we show
MP-RDMA’s ability to do congestion-aware traffic
distribution.

Setup: We configure each path to 10G and start one
MP-RDMA long connection sending unlimited data at the
maximum rate. Normally, the traffic is evenly balanced among
the four parallel paths. Then after ∼30s, we start another
special MP-RDMA flow which is manually forced to use only
Path 4 (denoted as SP-RDMA). The SP-RDMA flow will
cause a sudden congestion on Path 4. We evaluate how MP-
RDMA perceives the congestion and moves the load away
from Path 4.

7Without OOO control, the 99.9th OOD is 179 and 5324 for the two
abnormal scenarios, respectively.

Fig. 17. Path selection.

Fig. 18. MP-RDMA fairness.

Results: Fig. 17 shows the throughput of the
MP-RDMA flows on each of the four paths. Before the
SP-RDMA flow joins, each path has a throughput stable at
∼10Gbps. After the SP-RDMA joins on Path 4, the throughput
of the MP-RDMA flows on Path 4 quickly falls to near zero.
Meanwhile, the throughput on other 3 paths all remains at
around 10Gbps. This indicates that MP-RDMA can quickly
perceive the congestion on Path 4, and moves the load away
from this path. Also, since the congestion conditions on other
paths remain unchanged, MP-RDMA does not adjust the
load on them. Here we don’t focus on the fairness between
SP-RDMA and MP-RDMA connections.

3) Fairness of MP-RDMA : Setup: In this experiment, two
physical servers under one ToR establish multiple MP-RDMA
connections to another server under the same ToR creating a
single bottleneck. 8 MP-RDMA connections are started one
by one with an interval of 30s, and then leaves the network
one after another with the same time interval. We measure the
application goodput of each connection.

Results: Fig. 18 shows that all flows evenly share the
network, and get the fair share quickly. Specifically, each
connection’s throughput quickly converges to ∼ 40

n Gbps, when
n varies from 1 to 8 and then 8 to 1. The Jain fairness
index [47] is within 0.996 - 0.999 (1 is optimal) under various
number of concurrent flows.

4) Incast: Next we evaluate MP-RDMA’s congestion
control under more stressed scenario, i.e., incast.

Setup: The traffic pattern mimics a disk recovery service [2]
where failed disks are repaired by fetching backups from
several other servers. Specifically, a receiver host initiates
one connection with each of the N randomly selected sender
host, simultaneously requesting 1Gb data from each sender.
Following the convention in DCQCN [2], we vary the incast
degree from 1 to 9. The experiment is repeated five times.
We evaluate the overall application goodput at the receiver
end.

Results: Fig. 19 shows that MP-RDMA achieves similar
near-optimal incast performance as DCQCN. To be specific,
when incast degree increases from 1 to 9, the total goodput of
the 5 connections remains stable, at around 37.65Gbps. Note
that MP-RDMA achieves a little (∼3%) higher goodput than
DCQCN. We cannot ascertain the exact root cause of this,
but we believe this may be an implementation issue with the
Mellanox NIC instead of an algorithm issue with DCQCN.

CHEN et al.: MP-RDMA: ENABLING RDMA WITH MULTI-PATH TRANSPORT IN DATACENTERS 2319

Fig. 19. Incast performance.

Fig. 20. α impact.

Fig. 21. Synchronise mechanism performance.

5) Synchronise Mechanism Performance: In this section,
we evaluate the impact of sychronise mechanism on appli-
cation performance.

Setup: The same permutation traffic in §VI-A.2 is used to
emulate a typical network congestion. Synchronise messages
will be delayed for a while and then send out. This results
in burst traffic and causes large delay fluctuations. We stress
test the mechanism under the case when the load is as
high as 0.8. We first study the setting of parameter α by
measuring the amount of out-of-order synchronise messages
under different α. Then α is set to a value that ensures all the
synchronise messages are in order. The average goodput for
the 5 connections under various ratio of synchronise messages
are measured. Two different message sizes are evaluated,
i.e., 512KB (RDMA-based RPC application [12]) and 32KB
(a more challenging smaller size). The results are compared
with DCQCN, which achieves only ∼20Gbps in average (due
to ECMP hash collision). We also evaluate MP-RDMA (Stop-
Wait), in which a synchronise message is sent only when all
previous messages are completed.

Results: As shown in Fig 20, larger α leads to less OOO
synchronise messages. Under the same α, OOO is severer for
larger message size due to the more congested network. When
α is 1.0, no OOO occurs in our tests. As such, we set α to
1.0 for the following experiment.

Fig. 21 shows the result for synchronise mechanism impact
on throughput. When message size is large (e.g., 512KB),
both MP-RDMA and MP-RDMA (Stop-Wait) can achieve
∼30Gbps goodput, which is ∼48% higher than single-path
DCQCN across all synchronise ratios. This is because the Δt
for sending synchronise messages is ∼0.5 RTT for MP-RDMA
and ∼1 RTT for MP-RDMA (Stop-Wait). Both are rather

small compared with the transmission delay for a 512KB
message. Thus the impact of Δt is amortized. When message
size is smaller (i.e., 32KB), Δt is larger compared with the
message transmission delay. Thus the goodput drops as the
synchronise message ratio grows. However, with our optimistic
transmission algorithm (§III-D), MP-RDMA still achieves
good performance. Specifically, MP-RDMA gets 13%∼49%
higher throughput than DCQCN under 0∼60% synchronise
ratio. When the synchronise ratio grows to 80%, MP-RDMA
performs 16.28% worse. Note that this is already the worst
case performance for MP-RDMA because the traffic load is at
its peak, i.e. 100%. More results (omitted due to space limita-
tion) show that, when the load is lighter, MP-RDMA performs
very close to DCQCN under high synchronise ratio. On the
contrary, the naive MP-RDMA (Stop-Wait) only achieves less
than 50% throughput of MP-RDMA.

VII. RELATED WORK

Various multi-path transmission mechanisms
propose to utilize parallel network paths in
datacenters [5]–[7], [25], [28]–[33], [48]. Most of them
consider only TCP, and cannot be directly used for RDMA.

Load-Balance Routing

Previous approaches such as [6], [7], [25], [28]–[33], [48]
propose to balance traffic over a set of paths at the routing
layer. In order to handle out-of-order packets, some of them,
e.g., [25], [32], utilize a dedicated reordering buffer under the
transport layer. However, these schemes are hard to implement
in NIC hardware. Other work, e.g., [6], [33], try to proactively
avoid out-of-order delivery. Most of them utilize flowlets. If
the inactive gap between flowlets is long enough, flowlets can
be distributed to different paths without causing out-of-order.
However, for RDMA which is implemented in hardware and
usually smoothed with a rate-shaper, it is quite hard to find
flowlets. To validate this, we study the flowlet characteristics
of RDMA and compare it with TCP on our testbed. We
measure the size of flowlets with various inactive intervals. For
each experiment, we run 8 RDMA/TCP flows with size 2GB.
Fig. 22 shows that it is really difficult to observe flowlets in
RDMA traffic. When the inactive interval is larger than 2μs,
the flowlet size is strictly 2GB. In contrast, TCP does have
flowlets. When we set the inactive gap to 100μs, we observe
many flowlets with size ∼60KB. We conclude that flowlet-
based load balancing schemes may not work well for RDMA
traffic. A recent work [49] reports that flowlet can be used to
do load balance for DCQCN traffic. This might be true for
applications with an on-off traffic pattern, but not for appli-
cations that are throughput intensive. Moreover, as flowlets
cannot guarantee out-of-order free, it’s not clear how out-of-
order RDMA packets would impact the performance in [49].

Multi-Path Transport

MPTCP modifies TCP to enable multi-path transmission [5],
[50], [51]. The core idea is to split the original transport
into several sub-flows and distribute packets among these sub-
flows according to their congestion states. Thereby MPTCP
adds additional states proportional to the number of sub-
flows and explores a large re-ordering buffer at the trans-
port layer to handle out-of-order packets. As aforementioned,

2320 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Fig. 22. Flowlet characteristics in TCP and RDMA.

this design adds considerable memory overhead and is difficult
to implement in hardware.

Generally, the multi-path ACK-clocking of MP-RDMA
resembles the PSLB algorithm [52] in the sense that both
schemes adjust their load on multiple paths in a per-ACK
fashion. However, MP-RDMA independently adjusts the load
on each path while PSLB dynamically moves the load of slow
paths to fast paths.

Recently Mellanox proposed a multi-path support for
RDMA [53]. However, it is just a fail-over solution using
two existing single-path RoCE connections (hot standby). The
goal and the techniques of the Mellanox multi-path RDMA
are completely different from MP-RDMA, which is a new
multi-path RDMA transport.

VIII. DISCUSSION

A. Compare With Other Load-Balancing Routing and
Multi-Path Transport

We use a simple simulation to compare the performance of
MP-RDMA with CONGA [6], DRILL [48] and MPTCP [5],
which are representative solutions of load-balancing routing
(CONGA and DRILL) and multi-path transport (MPTCP) for
datacenters, respectively. Note that we only target a quick and
simple comparison of how well they utilize the multiple paths
capacity in RDMA environment, rather than a comprehensive
evaluation since neither CONGA, DRILL nor MPTCP are
designed for RDMA and there are no existing works that
discuss how to adapt them into RDMA environments.

We simulate a host that transmits a single RDMA flow with
unlimited data to another host through a network with two
parallel paths. Each path’s capacity is 5Gbps and each host is
connected to the network with a 10Gbps access link. The base
RTT is 10us. We implement CONGA and DRILL on top of the
RDMA NS3 simulation code [54] with DCQCN congestion
control enabled. Note that although MPTCP consumes two
much hardware resources which is not suitable for RDMA
NIC implementation, here we ignore this practical limitation
in the simulation so we can compare MPTCP with our MP-
RDMA.

Fig. 23 shows the flow goodput and the transmission
throughput measured on each path. Results show that
MP-RDMA can fully utilize the two parallel paths and
achieves about 10Gbps flow goodput, performing the same as
MPTCP which uses multiple sub-flows to maintain per-path
states.

CONGA cannot well utilize these two parallel paths.
We evaluate various settings for the time length to divide
flowlets in CONGA (called flowlet gap), i.e., 700us, 500us,
300us, 100us. Results show that when the flowlet gap is large
(700us and 500us), an RDMA flow with DCQCN congestion
control can only be divided into large flowlets. Hence it can
only utilize one path for each period of time, and the flow

Fig. 23. Comparing MP-RDMA with MPTCP and CONGA.

goodput can only achieve about 5Gbps. However, when we
decrease the flowlet gap, although flow packets now can be
distributed on the two paths simultaneously, the small flowlet
switching gap causes out-of-order arrival and the flow goodput
even becomes lower because current RDMA transport is very
sensitive to out-of-order and packet loss [2]. For example,
when the flowlet gap is 100us, the transmission throughput on
each path achieves about 5Gbps, but the overall flow goodput
downgrades to about 4Gbps, because there are a lot out-of-
order arrivals and many retransmissions on each path.

DRILL aggressively spreads packets to multiple output
ports (randomly choose one of the shortest queues) at each
switch, so it incurs significant packet out-of-order arrival at
the receiver. Since existing RDMA NIC regards out-of-order
arrival as packet loss and triggers go-back-N loss recovery,
the overall throughput is degraded to only about 1Gbps
(Fig. 23(g)), and there are many retransmitted packets on each
path.

B. MP-RDMA Fairness Under Different MTUs

In order to evaluate MP-RDMA’s fairness under different
MTUs, we incur two long flows with different MTUs into

CHEN et al.: MP-RDMA: ENABLING RDMA WITH MULTI-PATH TRANSPORT IN DATACENTERS 2321

Fig. 24. Fairness between two flows with different MTUs.

Fig. 25. Compare with advanced RDMA loss recovery schemes.

the network. The second flow joins after the first flow has run
for 0.2 seconds. The other simulation settings are the same as
in §VIII-A.

Fig. 24 shows the throughput of each flow as time grows.
We can see that MP-RDMA can achieve good fairness among
flows with various MTUs. The reason is that MP-RDMA flows
will compete with the shared path according to the number
of bytes, rather than the number of packets. Let us consider
a simple example to analyze the flow speed changing trend
under the steady state. We assume that a flow with 1500B
MTU is competing with a flow with 750B MTU on the same
link and both reach 50% of the link speed (which reaches the
ideal fairness). The two flows will encounter the same ECN
marking ratio, as they are in the same switch queue and the
queue uses a certain marking curve according to the queue
length (in bytes). Since the second flow has twice packets
in the queue as the first flow (so their data speeds are equal
because their MTUs are different), the second flow will get
twice ECN marked ACKs back. As such, the second flow will
decrease its cwnd twice as the first flow in terms of packets,
which makes the cwnd decreasing amount equal in terms of
bytes for the two flows. As such, their sending rate will keep
the same and the fairness has been kept.

C. Compare With Other RDMA Loss Recovery Scheme

There are other recent works trying to improve RDMA’s loss
recovery [45], [55]. We compare MP-RDMA with an advanced
RDMA loss recovery scheme, MELO [45], which enables
SACK loss recovery for RDMA. Specifically, we use NS3 to
simulate a network with two 40Gbps parallel paths, with one
path having a random loss rate (from 0.001% to 1%). We inject
a long flow into the network to see how different methods
perform under such lossy condition. The other simulation
settings are the same as before. We evaluate MP-RDMA under
two scenarios. First, we force all VPs in MP-RDMA only
going through the lossy path (denoted as MP-RDMA (Single-
path)), to evaluate the loss recovery efficiency of MP-RDMA.
Next, we let MP-RDMA’s VPs randomly mapped onto the
two parallel paths (denoted as MP-RDMA (Multi-path)), and
evaluate whether MP-RDMA can avoid the bad paths. Both
MELO and DCQCN are forced on the lossy path.

Fig. 25 shows the result. Benefited from SACK loss recov-
ery, MELO can almost keep the maximal 40Gbps throughput
under various loss rate. However, due to go-back-N loss
recovery, current RDMA (DCQCN) can only achieve less
than 50% throughput even under a very low loss rate (0.1%).
Since we still use go-back-N loss recovery, throughput of
MP-RDMA (Single-path) also drops to about 80% when
encountering 0.1% loss. However, MP-RDMA (Single-path)
behaves much better than DCQCN. It is because MP-RDMA
receiver has a small bitmap to record OOO packets (L = 64
in our simulation) and OOO packets within the bitmap are
buffered instead of simply dropped in DCQCN. Therefore,
the sender can recover the loss more quickly. When there are
multiple paths to use, MP-RDMA can quickly walk around the
lossy path benefited from the OOO-aware path selection, and
keeps almost the maximal 40Gbps throughput. The throughput
is a little lower than MELO due to the overhead of packet
header and the overhead during path selection/probing.

IX. CONCLUSION

This paper presents MP-RDMA, a multi-path transport for
RDMA in datacenters. It can efficiently utilize the rich network
paths in datacenters while keeping on-chip memory footprint
low. MP-RDMA employs novel multi-path ACK-clocking and
out-of-order aware path selection to choose best network paths
and distribute packets among them in a congestion-aware
manner. In total, MP-RDMA requires only a small constant
(66B) amount of extra memory for each RDMA connection
no matter how many network paths are used. Our FPGA-based
prototype validates the feasibility for MP-RDMA’s hardware
implementation. Our evaluations on a small-scale testbed as
well as large-scale simulation illustrate the effectiveness for
MP-RDMA in utilizing the rich network paths diversity in
datacenters.

ACKNOWLEDGMENT

The authors thank their NSDI shepherd M. Freedman and
the anonymous reviewers for their valuable comments and
suggestions. They thank D. Wei and T. Xu for their work on
NS3 simulation for CONGA and MPTCP. They are grateful to
W. Bai, R. Shu and H. Xu for their comments on the modeling.
They also thank L. Luo for his discussion to improve the
quality of the paper. Y. Wang, W. Xiao and S. Lee helped
them to improve the writing.

REFERENCES

[1] Y. Lu et al., “Multi-path transport for RDMA in datacenters,” in Proc.
15th USENIX Conf. Netw. Syst. Design Implement., 2018, pp. 357–371.

2322 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

[2] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 523–536,
2015.

[3] C. Guo et al., “RDMA over commodity Ethernet at scale,” in Proc. ACM
SIGCOMM Conf., 2016, pp. 202–215.

[4] S. S. Vazhkudai et al., “The design, deployment, and evaluation of
the CORAL pre-exascale systems,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage, Anal., Piscataway, NJ, USA, 2018, p. 52.

[5] C. Raiciu et al., “Improving datacenter performance and robustness with
multipath TCP,” in Proc. ACM SIGCOMM Conf., New York, NY, USA,
2011, pp. 266–277.

[6] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. ACM Conf. SIGCOMM, New York,
NY, USA, 2014, pp. 503–514.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
7th USENIX Conf. Netw. Syst. Design Implement., Berkeley, CA, USA,
2010, p. 19.

[8] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines for high
performance RDMA systems,” in Proc. USENIX Conf. Usenix Annu.
Tech. Conf., 2016, pp. 437–450.

[9] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, scalable
and simple distributed transactions with two-sided (RDMA) datagram
RPCs,” in Proc. 12th USENIX Conf. Operating Syst. Design Implement.,
Savannah, GA, USA, 2016, pp. 185–201.

[10] Linux Cross Reference. Accessed: Oct. 1, 2018. [Online]. Available:
http://lxr.free-electrons.com/source/include/linux/mlx4/qp.h

[11] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” ACM SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, pp. 139–152, 2015.

[12] M. Wu et al., “GraM: Scaling graph computation to the trillions,” in
Proc. 6th ACM Symp. Cloud Comput., 2015, pp. 408–421.

[13] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM:
Fast remote memory,” in Proc. 11th USENIX Conf. Netw. Syst. Design
Implement., 2014, pp. 401–414.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM
Symp. Cloud Comput., Jun. 2010, pp. 143–154.

[15] InfiniBand Architecture Volume 1, General Specifications, Release 1.2.1,
Beaverton, OR, USA, InfiniBand Trade Association, 2008.

[16] InfiniBand Architecture Volume 2, Physical Specifications, Release 1.3,
Beaverton, OR, USA, InfiniBand Trade Association, 2012.

[17] Supplement to InfiniBand Architecture Specification Volume 1 Release
1.2.2 Annex A17: RoCEv2 (IP Routable RoCE), Beaverton, OR, USA,
InfiniBand Trade Association, 2012.

[18] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 537–550, 2015.

[19] Cisco. Priority Flow Control: Build Reliable Layer 2 Infrastructure.
Accessed: Oct. 1, 2018. [Online]. Available: http://www.cisco.com/en/
US/prod/collateral/switches/ps9441/ps9670/white_paper_c11-542809_
ns783_Networking_Solutions_White_Paper.html

[20] 802.1Qbb—Priority-based Flow Control. Accessed: Oct. 1, 2018.
[Online]. Available: http://www.ieee802.org/1/pages/802.1bb.html

[21] IEEE 802.1Qau Congestion NotificationNo. [Online]. Available:
http://www.ieee802.org/1/pages/802.1au.html

[22] G. Chen et al., “Fast and cautious: Leveraging multi-path diversity for
transport loss recovery in data centers,” in Proc. USENIX Conf. Usenix
Annu. Tech. Conf., 2016, pp. 29–42.

[23] A. Singh et al., “Jupiter rising: A decade of Clos topologies and
centralized control in Google’s datacenter network,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015.

[24] A. Roy, H. Zeng, J. Bagga, G. Porter, and C. A. Snoeren, “Inside
the social network’s (datacenter) network,” ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 123–137, 2015.

[25] J. Cao et al., “Per-packet load-balanced, low-latency routing for clos-
based data center networks,” in Proc. 9th ACM Conf. Emerg. Netw. Exp.
Technol., New York, NY, USA, 2013, pp. 49–60.

[26] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[27] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. SIGCOMM, 2009, pp. 51–62.

[28] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
Exp. Technol., 2011, p. 8.

[29] J. Rasley et al., “Planck: Millisecond-scale monitoring and control
for commodity networks.” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 407–418, 2015.

[30] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proc. INFOCOM,
Apr. 2013, pp. 2130–2138.

[31] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized ‘zero-queue’ datacenter network,” ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 4, pp. 307–318, 2014.

[32] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 465–478,
2015.

[33] N. Katta et al., “CLOVE: How I learned to stop worrying about the core
and love the edge,” in Proc. 15th ACM Workshop Hot Topics Netw., 2016,
pp. 155–161.

[34] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4,
pp. 397–413, Aug. 1993.

[35] A. Gurtov, T. Henderson, S. Floyd, and Y. Nishida, The NewReno
Modification to TCP’s Fast Recovery Algorithm, document RFC 6582,
RFC Editor, Apr. 2012. [Online]. Available: https://rfc-editor.
org/rfc/rfc6582.txt, doi: 10.17487/RFC6582

[36] ConnectX-5 EN IC. Accessed: Oct. 1, 2018. [Online]. Available:
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-5_
EN_IC.pdf.

[37] A. Hughes, “Issues in TCP slow-start restart after idle,” Internet Eng.
Task Force, Work Prog., Tech. Rep. draft-hughes-restart-00, Nov. 2001.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-hughes-
restart-00

[38] Ns3: A Discrete-Event Network Simulator for Internet Systems.
Accessed: Oct. 1, 2018. [Online]. Available: https://www.nsnam.org/

[39] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
Stability, convergence, and fairness,” in Proc. ACM SIGMETRICS Joint
Int. Conf. Meas. Modeling Comput. Syst., 2011, pp. 73–84.

[40] Altera. Stratix V FPGAs. Accessed: Oct. 1, 2018. [Online]. Available:
https://www.altera.com/products/fpga/stratix-series/stratix-v/overview
html

[41] B. Li et al., “ClickNP: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proc. ACM SIGCOMM
Conf., 2016, pp. 1–14.

[42] Mellanox. Connectx-3 Pro en Single/Dual-Port Adapters 10/40/56gbe
Adapters W/ Pci Express 3.0. Accessed: Oct. 1, 2018. [Online]. Avail-
able: http://www.mellanox.com/page/products_dyn?product_family=
162&mtag=connectx_3_pro_en_card

[43] Mellanox. RoCE vs. iWARP Competitive Analysis. Accessed:
Oct. 1, 2018. [Online]. Available: http://www.mellanox.com/related-
docs/whitepapers/WP_RoCE_vs_iWARP.pdf

[44] Arista 7050X & 7050X2 Switch Architecture (‘A day in the
life of a packet’). Accessed: Oct. 1, 2018. [Online]. Available:
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7050X_
Switch_Architecture.pdf.

[45] Y. Lu et al., “Memory efficient loss recovery for hardware-based
transport in datacenter,” in Proc. 1st Asia–Pacific Workshop Netw., 2017,
pp. 22–28.

[46] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf., New York, NY, USA, 2010, pp. 63–74.

[47] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An expla-
nation,” Dept. Comput. Inf. Sci., The Ohio State University, Columbus,
OH, USA, Tech. Rep. 99-0045, 1999.

[48] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro load balancing for low-latency data center networks,”
in Proc. Conf. ACM Special Interest Group Data Commun., New York,
NY, USA, 2017, pp. 225–238.

[49] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it
flow: Resilient asymmetric load balancing with flowlet switching,”
in Proc. 14th USENIX Conf. Netw. Syst. Design Implement., 2017,
pp. 407–420.

[50] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for multipath
TCP,” in Proc. 20th IEEE Int. Conf. Netw. Protocols, Oct./Nov. 2012,
pp. 1–10.

[51] Y. Cao, M. Xu, X. Fu, and E. Dong, “Explicit multipath congestion
control for data center networks,” in Proc. 9th ACM Conf. Emerg. Netw.
Exp. Technol., 2013, pp. 73–84.

[52] J. Anselmi and N. Walton, “Decentralized proportional load balancing,”
SIAM J. Appl. Math., vol. 76, no. 1, pp. 391–410, 2016.

CHEN et al.: MP-RDMA: ENABLING RDMA WITH MULTI-PATH TRANSPORT IN DATACENTERS 2323

[53] Mellanox Technologies. Multi-Path RDMA. Accessed: Oct. 1, 2018.
[Online]. Available: https://www.openfabrics.org/images/eventpresos/
workshops2015/DevWorkshop/Tuesday/tuesday_04.pdf

[54] NS-3 Simulator for RDMA. Accessed: Oct. 1, 2018. [Online]. Available:
https://github.com/bobzhuyb/ns3-rdma/

[55] R. Mittal et al., “Revisiting network support for RDMA,” in Proc. Conf.
ACM Special Interest Group Data Commun., 2018, pp. 313–326.

Guo Chen received the Ph.D. degree from Tsinghua
University in 2016. Before joining Hunan University,
he was an Associate Researcher with Microsoft
Research Asia from 2016 to 2018. He is cur-
rently an Associate Professor with Hunan University.
His current research interests lie broadly in net-
worked systems and with a special focus on data
center networking.

Yuanwei Lu received the joint Ph.D. degree from
the University of Science and Technology of China
and Microsoft Research Asia in 2018. He is currently
a Senior Software Engineer with Tencent. He is
broadly interested in data center networking and
networked systems.

Bojie Li received the Ph.D. degree in computer
science from the University of Science and Tech-
nology of China (USTC) and Microsoft Research
Asia (MSRA) in 2019. He was among the first to
work on data center systems with programmable
NICs. He is currently a Senior Developer with
the Distributed and Parallel Software Lab, Central
Software Institute, Huawei 2012 Labs.

Kun Tan is currently the Vice President of Central
Software Institute, and the Director and a Chief
Architect of Cloud Networking Lab, Huawei Tech-
nologies. He is a generalist in computer networking
and communication, who has rich experience in
all layers of computer networking from application
layer to physical layer. He designed the Compound
TCP (CTCP) protocol (shipped in Windows ker-
nel) and invented the Sora software radio platform
(publicly available from MSR).

Yongqiang Xiong received the B.S., M.S., and
Ph.D. degrees in computer science from Tsinghua
University, Beijing, China, in 1996, 1998, and 2001,
respectively. He is currently a Lead Researcher with
Microsoft Research Asia and leads the Network-
ing Research Group. His research interests include
computer networking and networked systems.

Peng Cheng received the B.S. degree in software
engineering from Beihang University in 2010, and
the Ph.D. degree in computer science and technology
from Tsinghua University in 2015. He was a Visit-
ing Student with UCLA from September 2013 to
September 2014. He is currently a Researcher with
Microsoft Research Asia. His research interests are
computer networking and networked systems and
with a recent focus on data center networks.

Jiansong Zhang received the bachelor’s and
master’s degrees from Tsinghua University and the
Ph.D. degree from The Hong Kong University of
Science and Technology. He was a Researcher with
Microsoft Research Asia. He is currently a Staff
Engineer with Alibaba Group. He has published tens
of articles in Sigcomm, NSDI, Mobicom, Ubicomp,
Mobisys, HotNets, and HotChips. His research inter-
ests are building innovative software and hardware
systems.

Thomas Moscibroda received the Ph.D. degree
from ETH Zurich in Switzerland, in 2006, and was
awarded the ETH Medal for his doctoral thesis. He is
currently a Partner Research Scientist with Microsoft
Azure. In this role, he is driving and overseeing
projects aimed at increasing Microsoft’s cloud com-
puting efficiency, and cloud capacity experience.
Many of his cloud resource management technolo-
gies have become core infrastructure components in
Microsoft Azure data centers. Before joining Azure
in September 2017, he managed the Cloud & Mobile

Research Group, Microsoft Research Asia. He was also the Chair Professor for
Network Science with the Institute for Interdisciplinary Information Sciences
(IIIS), Tsinghua University. Before moving to China in 2011, he was a member
of the Systems Research Group at Microsoft Research in Redmond, and
an affiliate member of the Networking Research and Computer Architecture
Research groups, respectively.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

