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those recommendation scenarios where finding out query results to be wrong brings non-negligible sunk
cost, such as spending time to visit a recommended interest point. To address this concern, we propose a
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Moreover, in order to optimize the query speed for finding such M-Skyline results, we devise several
fast query algorithms. Extensive experiments with both real and synthetic datasets demonstrate the
effectiveness and efficiency of our proposed algorithms under various scenarios.
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1. Introduction
1.1. Skyline query and P-Skyline query

The skyline query is a powerful tool for multi-criteria data
analysis, data mining, and decision making [1-6]. Given a set of
data points with multiple attributes, a skyline query retrieves a
set of data points, called skyline tuple. The points in skyline tuple
are not dominated by any other data points, i.e., the best choice
will come from the skyline tuple for sure in regards of any offered
criteria. The following classic example illustrates the skyline query.
Suppose a user Tom wants to find a hotel nearby and the price and
distance of these hotels are shown in Fig. 1(a). We can see that
hotel a, c, and f are candidates for best choices because no hotel
has better attributes in all dimensions than any of a, c or f (e.g., b
has shorter distance than c, but higher price). Therefore, the result
for the skyline query upon this dataset is {a, c, f}, which forms a
skyline tuple.

In reality, however, our datasets often contain uncertainty aris-
ing from various causes, such as incomplete survey results, data
measure and collection methods, statistical and data mining tech-
niques. To handle skyline query on such uncertain datasets, pre-
vious work proposed the P-Skyline model [7], which can get the
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skyline data points whose probabilities to be the skyline are no
smaller than a user-defined probability p. Here gives an example.
Assume there are a couple of hotels with price and distance as
shown in Fig. 1(b), where the probability of a data point x having
the price and distance displayed in the axises is denoted as P(x).
Then a P-Skyline query with a threshold probability of 0.7 over
this data would return a skyline tuple of {a, c}. Similarly, when the
threshold probability is 0.5, the result is {a, c, f}.

1.2. P-Skyline query is not enough

While P-Skyline query will return a result with at least p prob-
ability to be skyline, it returns no alternative skyline results if we
are unlucky to hit the rest 1 — p probability. Although such all-or-
nothing manner may not be so critical under some scenarios (e.g.,
NBA player statistics case in [7]), it does greatly hurt user experi-
ence for those recommendation scenarios where finding out query
results to be wrong brings non-negligible sunk cost. For example, in
the previous hotel recommendation scenario, P-Skyline query only
returns a set of hotels that are closer to the querying user and/or
have lower price with at least a certain probability. However, once
a user goes to a hotel and unluckily finds its price is not accurate,
he needs to query the skyline again (may use a higher probability
threshold) and go to other recommended hotels which may be far
away from the current one. More worse, such steps may repeat
several times until the user finally gets the right hotel.
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Fig. 1. Skyline query illustration.
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Fig. 2. Nearby map.

1.3. M-Skyline query

Therefore, to deal with aforementioned recommendation sce-
nario, a skyline query that takes consideration of sunk cost and
offers backup recommendation would be very helpful in regards
of improving user experience. Let us also use the previous hotel
recommendation as an example to illustrate. Assume the accurate
positions of all hotels and the position of user Tom are as shown in
Fig. 2. Although hotel a is the skyline with probability of 0.8, hotel
{b, d} are very close to each other, and also, their distance and price
are reasonably close to the skyline as shown in Fig. 1. As such, it
may be better to encourage user to visit group {b, d} rather than
a, since it is not likely that Tom does not satisfy with both hotels
in the group. However, because other hotels are faraway from q,
Tom will be hard to get alternative hotels if a is recommended and
found to be incorrect.

Thus, in this paper, we propose a new model called M-Skyline
query to handle this situation. Specifically, M-Skyline returns sky-
line groups instead of skyline points, and considers the expected
sunk cost and other attributes of the whole group as the criteria
to determine the skyline. As such, with M-Skyline, user can choose
a group according to the expected sunk cost, and has alternative
recommendations within the group. This brings better user expe-
rience for recommendation over uncertain datasets.

One more thing to notice is that, group-based M-Skyline query
apparently incurs much larger computation cost than original
point-based ones. For a probabilistic database with a size of n, the
number of possible groups could be Z;zo(n —m)! x (7' (details in
Section 2). For the example shown in Figs. 2 and 3 which contains

eight candidate hotels, it turns into 8!+7! x Cg +6! x CZ 45! x G5 +
41 x Cf + 3! x C; +2! x C§ + 1! x C§ = 190, 600 different groups.
Obviously, a brute-force method is not suitable for M-Skyline query
on any meaningful-size datasets. Therefore, in this work, we also
propose several optimized processing algorithms that can greatly
reduce the computation complexity of M-Skyline query, and make
it computationally practical for real datasets.

1.4. Contribution

In overall, we make the following contributions in this paper.

e We present the M-Skyline model instead of traditional prob-
abilistic skyline that takes sunk cost and alternative recom-
mendation in consideration for skyline query on uncertain
data.

o To accelerate the M-Skyline query processing speed, we pro-
pose several pruning approaches to reduce the searching
space effectively, and further devise several fast M-Skyline
query algorithms.

e We perform an extensive experimental study with both syn-
thetic and real datasets to verify the efficiency and effective-
ness of our proposed model and algorithms.

The rest of the paper is organized as follows. M-Skyline and
necessary definitions are introduced in Section 2. In Section 3, we
design some effective pruning strategies and algorithms to deal
with the process of M-Skyline. In Section 4, we evaluate the per-
formance of the proposed algorithm using extensive experiments.
Related works are reviewed in Section 5. In Section 6, we conclude
the paper and also suggest the directions for future work.

2. M-Skyline query

In this section, we first introduce some basic definitions. Then
based on that, we propose the formal definition of M-Skyline
model. Table 1 shows the symbols and explanations which are
used in this paper.

In M-Skyline we recommend a points group instead of a single
point. A recommended group is a group of points that have certain
recommendation sequence, i.e., the latter points are the alternative
of the former ones. Assuming the iy, point in dataset t is denoted
as t;, a recommend group is formally defined as:

Definition 1. A M-Skyline recommended group is a permutation
of n points, where n is the number of points in this group.n > 0
and n < the total size of dataset t.
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Distance h g f e d c b a Tom
Tom 17.8 20.6 19.9 14.2 9.6 7.6 5.7 5 0
a 18.4 23.3 18.3 16.3 14.5 12,5 10.6 0
b 18 19.5 23.5 14.2 3.9 3.2 0
c 211 15.9 22.7 17.2 3.5 0
d 19.5 19.3 26.2 15.4 0
e 4.1 33.7 34.3 0
f 36.7 17.9 0
g 37.4 0
h 0

Fig. 3. Sunk cost of moving between each point (i.e., distance in this example).

Table 1
Symbols and description.

Nota- Description

tion

ty The py, point in dataset t, starting from 1

t <tq t, dominates t,

b Atg t, does not dominate t;

P; The probability of the iy, point in a recommended group having
all its attributes equal to the value as recorded in the dataset

Py, The probability of point t, having all its attributes equal to the
value as recorded in the dataset

3 The disappointment probability of a recommended group

D; The extra cost for moving to the j; point after trying the i, point
in a recommended group. Dy ; refers to the initial cost of trying
the first point in a recommended group

Dy ¢ The extra cost for moving to point ¢; after trying point ¢;. Do g,
refers to the initial cost of trying point ; in the database

D* The expected sunk cost of a recommended group

N,." Value of the kg, attribute of the ig; point in a recommended group

Nt’j Value of the kg, attribute of point ¢; in the database

Nk+ The expected value of the kg, attribute of a recommended group

o The threshold of disappointed possibility

M(S) The M-Skyline answers of database S

Note that the order of points matters. The same points can be
different groups if they have different orders of permutation.

In P-Skyline model, any point t; has a probability of P;, to have
all its attributes equal to the values recorded in the given datasets.
So similarly, we need a metric to characterize the probability of a
M-Skyline group to have its points’ attributes equal to the values
recorded. As such, we define a metric &, whose formal definition is
as follows. Assume a recommended group contains n points.

Definition 2. & implies the possibility of no point in a recom-
mended group having its attributes equal to the recorded values. &
is calculated by & = []_,(1 — Py).

P; is the probability of the iy, point in a recommended group having
all its attributes equal to the value as recorded in the dataset.
Assuming the group’s iy point is t;, then P; = Py The lower &,
the lower chance that none of the points in this group has the
recorded value. Intuitively, & describes the probability that a whole
group is not satisfying for the user, so we call it the disappointment
probability.

Now we define a metric D to describe the expected sunk cost
of a recommended group. Specifically, assuming the user finally

finds a point in this group with all its attributes equal to the values
recorded in the dataset (denoted as the right point), D™ describes
how much cost it will take to find this point in expectation. We
define D;; as the extra cost for moving to the jy point after trying
the iy point, where Dy 1 refers to the initial cost of trying the
first point. As such, assuming a group has n points, we have the
following model of calculating D*:

Definition 3. D™ describes the expected sunk cost of a recom-
mended group, which is calculated by

n—1 m—1 m—1
D = 1Pn x ([ [(1 = PG x (D Dggin)]
m=1 p=1 q=0

n—1 n—1
+ ZDq,tHl X l_[(1 —Py)
q=0 p=1

In overall, D" is the sum of two parts. The first part is the expected
sunk cost of finding one of the first n — 1 points to be the right one,
which equals the summation of the expected sunk cost of reaching
point 1 to n — 1 and stop (got the right one), respectively. The
second part is the cost of finding the ng, point to be the right one.
Note that since DV is calculated with the precondition of assuming
the user finally finds a right point in this group, we do not need to
multiply P, in the second part.

Now we define a metric N¥* to describe the expected attribute
value of a recommended group. Assume a group has n points.
Similar as D, assuming the user finally finds a right point in this
group:

Definition 4. N** describes the expected value of the ki, attribute
that the user gets from a recommended group, which is calculated
by

n—1 m—1 n—1
N =3 1P o [ J(1 = Pp) x NET+NE x [ (1= Py)
m=1 p=1 p=1

In overall, N** is the sum of two parts. The first part is the expected
value of the kg, attribute of finding one of the first n — 1 points
to be the right one, which equals the summation of the expected
attribute value of reaching point 1 to n — 1 and stop (got the right
one), respectively. The second part is the expected attribute value
of finding the ng, point to be the right one. Note that since N** is
calculated with the precondition of assuming the user finally finds
a right point in this group, we do not need to multiply P, in the
second part.
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Let us use an example in Fig. 2 to show &, DT and N** of a
recommended group. Since it has only one attribute in this exam-
ple, N+ is N+ and NL’{ is Nal. They represent the expected price
of the group and the price of a. Assume the sunk cost of moving
between each point (i.e., distance in this case) is given by Fig. 3.
Therefore, for the group containing a single point {a}, its £ = 0.2,
D* = Do, =5and N'" = N! = 50. However, for the group {a, c},
its § = 0.04, D% = P(a) x Do,q + (Do.q + Dac) x (1 — P(a)) = 7.5,
N™ = P(a) x N} + N} x (1 —P(a)) = 44.

With Definitions 3 and 4, the dominance relationship between
two groups, can be defined as Definition 5. Assume there are K
attributes for each point in this dataset.

Definition 5 (Group Dominance Relationship). For two groups G;
and G,, G; dominates G, (denoted by G; < G,), if and only if,
Vk (k=1, ....K) N¥*(G;) < N**(G,) and D*(G;) < D*(G,), and
Ik(k=1,...,K)N*(Gy) < N (Gy) or DH(G;) < DH(Gy).

Now, we define the M-Skyline query as follows,

Definition 6 (M-Skyline Query). The M-Skyline query returns sky-
line groups, that their &€ < «, and not dominated by any other
group. « is a user-defined disappointment probability threshold.

We give an example to illustrate M-Skyline query. For the
database which is shown in Figs. 2 and 3, the result M-Skyline
groups with « = 0.05 are {c, d} and {b, c, d}. The first recommen-
dation group has the best expected price guarantee with accept-
able expected distance and the second recommendation group has
the shortest expected distance with acceptable expected price. The
detail of the computation is illustrated in Section 3.

3. Processing algorithms to M-Skyline query

Group-based M-Skyline query apparently incurs much larger
computation cost than original point-based ones. For a probabilis-
tic database with a size of n, the number of possible groups could
be anzo(” —m)! x (. That is the permutation and combination
of groups contains n tuples, plus groups contains n — 1 tuples, and
so on.

For the example shown in Figs. 2 and 3 which contains eight
candidate hotels, it turns into 190,600 different groups. Obviously,
a brute-force method is not suitable for M-Skyline query on any
meaningful-size datasets. Therefore, in this section, we propose
several optimized algorithms that can accelerate M-Skyline query.

First, we begin with a baseline algorithm.

3.1. Baseline algorithm

A straightforward algorithm can be put forward according to
the definition of M-Skyline. It is realized by exhaustively combin-
ing all tuples in the database and then all possible groups can be
got. Subsequently, groups that & > o will be eliminated. Then, D™
and N** of all groups will be computed. After that, it can be pro-
cessed just like traditional probabilistic skyline query. However,
it is too costly. As illustrated in Section 1, even a small database
will extend to a great deal of groups. Obviously, it is unpractical.
Therefore, we need to impose restrictions on the extending of
unnecessary possible groups.

With Definition 2, it is noticeable that only the groups that
& < « are eligible to be candidate groups. On the contrary, groups
with & > « are ineligible to be candidate groups before extending.
We define two different states of groups in extending process by
Definitions 8 and 7. Briefly, root groups (Definition 7) are waiting
to be extended to many different complete groups, while complete
groups (Definition 8), are extended from root groups and they can
be considered as complete schemes to compare with each other.

Definition 7 (Root Group). For any sequential tuples combination,
{t1, &}, if £({t1, t2}) > «, it needs to be extended before eligible
to be a recommendation group. It is the root group of its possible
extensions, such as {tq, to, t3} and {t1, t3, t4}.

Definition 8 (Complete Group). For any sequential tuples combi-
nation, {t1, t2}, if £({t1, t2}) < «, it is a complete group, which is
eligible to be a recommendation group without further extending.

For any root group G;, it does not reach the requirement of users,
so that the calculation of its expected sunk cost D™ and expected
attribute value N** is meaningless in the processing of M-Skyline.
On the other hand, the D* and N** of complete group G; can be
counted during the processing of M-Skyline. In this way, many
unnecessary groups are not generated and the spatial and non-
spatial characteristics of many ineligible groups are not calculated.
After all the groups are generated, they can be processed as certain
skyline query. The OSPSPF algorithm in [8] is the most efficient
algorithm for certain data skyline query. Therefore, it can be used in
our baseline algorithm to provide better performance. Obviously,
the baseline algorithm with these designs is more efficient than the
straightforward algorithm.

Algorithm 1 Baseline Algorithm

Input: d-dimensional probabilistic data set S.
Output: M(S).

1: Initialize a tuple group for each tuples;

2: for each group G; do

3:  if&(G;) < «a then

4: count N¥+ and D™ for G;;

5. else

6: extend G; to different groups Gj;;

7: Process skyline query for all G; with OSPSPF algorithm;

The baseline algorithm can be illustrated briefly by a dataset
that includes {a, b, c}. The & of each tuple can be calculated accord-
ing to Fig. 2, which is £(a) = 0.2, £(b) = 0.3, £(c) = 0.2. Since all
of them are larger than «, they are root groups and extending is
required. Then we have six groups, which are {a, b}, {a, c}, {b, a},
{b, c}, {c, a}, {c, b}. Since £({a, b}) > «, it is still a root group and
needs to be extended to {a, b, c}. On the contrary, £({a, c}) < «,
so that it is a complete group and N'*({a, c}) and D*({a, c}) can
be counted. In this way, the M-Skyline answer of database {a, b, c}
can be given.

3.2. Inter-group structure optimization

Candidate groups that are generated in Algorithm 1 are still a
big challenge for processing. It will enhance the efficiency of M-
Skyline query if we properly filter some root groups before they
extended to complete groups. In order to realize the optimization,
a reasonable processing flow is required. Fig. 4(a) shows the pro-
cessing flow of Algorithm 1.

As illustrated in Algorithm 1, all root groups will extend to com-
plete groups. Afterwards, the characteristics of all complete groups
will be counted. However, some root groups are unnecessary to be
extended to complete groups since they have inferior character-
istics. The number of complete groups can be reduced if we can
prune some root groups before extending. In order to find out these
inferior root group, we can use a different way to calculate the
attributes of root groups. For the calculation of a complete group,
Definitions 4 and 3 are applicable, since tuples in group are fixed.
However, for a root group, other different tuples are possible to
join the group so that the calculation of its attributes cannot be
finished. For example, {b, a} is a root group, since £({b, a}) > «.
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Fig. 4. Processing flow optimizing.

Only transient states of its attributes can be counted, which are
D*{b, a} = P(a) x Do 4 + (1 — P(a)) x P(b) x (Do,q + Dqg,p) = 7.902
and N'"{b,a} = P(a) x N} + (1 — P(a)) x P(b) x N} = 49.1,
respectively.

With the transient states attributes of a root group, we have
Lemmas 1 and 2, to greatly reduce the generation of complete
groups.

Lemma 1. A root group dominates its extended groups.

Proof. Assume that a root group G; can be extended to a complete
group G; with tuple t; and t; is the last tuple in G;. It can be deduced
that D*(Gj) = D¥(Gi) 4+ P x Dy;. Since 0 < P < T1and Dy, ;; > 0,
so that DT(G;) > D*(G). In the same way, N*(G;) > N'é““(Gi).
Therefore, G; < G;. O

Lemma 2. If a complete group G; dominates a root group Gj, Gj can
be safely pruned without affecting the result of M-Skyline query.

Proof. According to Lemma 1, G; dominates all its extension
groups. G; is a complete group, which means the calculation of its
characteristics are finished. Therefore, G; dominates G; and all of its
extension groups and the lemma holds. O

As shown in Fig. 4(b), since D*{a, ¢} = 7.5 and N'*{a, c} = 44,
so that {a, c} < {b, a}. According to Lemma 2, {b, a} can be pruned
and the processing efficiency is improved.

In order to further reduce the generation of complete groups,
we can focus on the superior tuples. Some tuples have not only
better attributes but also higher reliable possibilities than other
tuples. We should utilize these superior tuples to prune some
relative complete groups before calculating group attributes. Su-
perior tuples full dominant some other tuples, which is defined in
Definition 9.

Definition 9 (Full Dominance Relationship). Tuple t; full dominates
tuple t; (t; << t;), if ; < t; and P(t;) > P(t;).

Full dominance relationship is different with dominance rela-
tionship. The stricter condition helps to prune more groups when
processing M-Skyline. Imagine that hotel a has not only better
characteristics but also higher reliable possibility than b, it seems
that going to arather than b at first is reasonable. Lemma 3 provides
the conditions to meet the imagination. With Lemma 3, some
groups consist of same tuples but have different sequence can be
pruned.

Lemma 3. Complete group {t;, t;} can be pruned by complete group
{ti, t;} when t; << tj and P(t;) + P(t;) > 1.

Proof. Assume thatt; << ¢ and P(t;) + P(t;) > 1. According to
Definition 3, D*({t;, t;}) = P(t;) X Do ¢, +(1—P(t;)) x Do ¢, + Dy =
Do’ti+Dti,tj_P(ti)XDti,[j.Similarly,D+({tj, tl}) = DO,[1+Dtj,t1_P(t])X

Dy, - D*({tj, t:}) — D*({ti, §}) = Do.t; — Do.; + Dy, 1 X (P(t;) — P(;)).
Since t; << tj, Doy — Doy = 0 and P(t;) — P(’tj) > 0. So that
D*({t;, t;}) > D*({t;, t;}). According to Definition 4, N*F({t;, ;}) =
P(t)x NE+(1=P(t))x Nf and N** ({8, t;}) = P(t;)x N{-+(1—-P(t;)) x
NENS({g, ) =N ({6, ) = (N};—Nr’;) x (P(t;)+P(t;)—1). Since
ti << t, N{;-N}; > 0.Since P(;)+P(t;) > 1,(P(t;)+P(t;)— 1) > 0.
So that N ({t;, t;}) > N**({t;, t;}). Since Dy ; = Do, and Nt’; = N§
are impossible to be true at the same time, we have {t;, j} < {t;, t;}
and this lemma holds. O

With Lemmas 2 and 3, Algorithm 3 is designed below. As shown
in Algorithm 3, three data pools, including root group pool, match
pool and complete group pool are created in processing. These
pools are designed to ensure an efficient orders when extending
root groups. The monotonic sorting of the database S is a pre-
processing method. Algorithm 3 topologically pre-sort the data
based on a monotone function, which requires that if tuple ¢;
precedes t; in the order, then t; cannot dominate t;.

In addition, Algorithm 2 is a part of Algorithm 3. Algorithm 2
describe the process flow when new extended groups are pro-
duced. When a new root group is created, it should be checked
that if it is dominated by any complete group. Similarly, when a
new complete group is created, it should be checked that if it is
dominated by any other complete group and if it dominates any
other root group. In this way, lots of root groups are pruned before
extending and both of the root group pool and the complete group
pool are kept in the minimum size.

Algorithm 2 New Extended Group Processing (NEGP)

Input: New Extended Group G;.
1: if £(G;) < « then

2:  Put G; into complete group pool;

3: if any group in complete group pool dominate G; then

4: Prune G;;

5:  if complete group G; dominate any root group in root group
pool then

6: Prune the dominated root groups;

7: else

8: Put G; into root group pool;

9: if G;is dominated by any group in complete group pool then

10: Prune G;.

As an example of Algorithm 3, let us consider tuples a, b, c, d, e
that shown in Fig. 1. The sequence of these tuples is ¢, d, a, b, e
after sorting. First of all, ¢ is picked from database. Since &£(c) > «,
root group {c} is created and tuple c is put into match pool. The
second tuple is d. As illustrated in line 4, group {c, d} is created.
Since £({c, d}) < «, it is a complete group. Then, root group {d}
and complete group {d, c} are created. However, {c, d} dominates
{d, c} so that the complete group pool still has only one group,
{c, d}. Match pool has two tuples, ¢ and d. When b is picked
into processing flow, the root group {b, a} is pruned, since it is
dominated by complete group {a, c}. Tuple e is full dominated by ¢
and d. According to Lemma 3, {e, c} and {e, d} are pruned directly.
Finally, only two groups are left in complete group pool, which are
{c,d} and {b, c, d}. They are the M-Skyline answer groups.

Algorithm 3 perform well before line 17. However, too much
groups are created when executing line 18 and most of them are
inferior groups. In order to enhance the efficiency of M-Skyline
query, a new pruning rule is presented in Section 3.3.

3.3. Optimization in root group extending

In order to enhance the efficiency of executing line 18 in Al-
gorithm 3, the location information of all tuples should be utilized
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Algorithm 3 Inter-Group Pruning (IGP)

Input: d-dimensional probabilistic data set S.
Output: M(S).
1: Monotonic sort S;
2: for All tuples in S do
3:  Pickt; fromS;
4:  Extend all root groups in root group pool with t;;
5. NEGP(Gy);
6: if&(t;) < a then
7 Put {t;} into complete group pool;
8 if any group in complete group pool dominate {t;} then
9

: Prune {t;};
10: else
11: if complete group {t;} dominate any root group in root
group pool then

12: Prune the dominated root groups;

13:  else

14: if any group in complete group pool dominate root group
{t;} then

15: Prune {t;};

16: else

17: Put root group {t;} into root group pool;

18: Extend root group {t;} with all tuples in match pool;

19: if any tuple t; in match pool full dominates t; and P(t;) +
P(t;) > 1then

20: Prune group {t;, t;} directly;

21: NEGP(G;);
22:  Put t; into match pool;
23: Return all groups in complete group pool.

more efficient. In reality, the location of each tuple is planar. There-
fore, the dominance relationship of location information should
be planar as well. As shown in Fig. 5, for Tom, t; has a location
dominance area and a reverse dominance area. For any tuple ¢;
in location dominance area and any tuple t; in reverse dominance
area, Dy, < Dy ;- This rule is very important and it will be utilized
to design a pruning rule soon afterwards.

The full dominance rules in Section 3.2 considers distance from
user to each tuple. In this section, only non-spatial values of tuples
are considered when judging full dominance relationships. Spatial
characteristics and non-spatial characteristics are considered sep-
arately in this section. It provides more precise information in the
design of pruning rules. With Lemma 4, much less groups will be
created when executing line 18 in Algorithm 3.

Lemma 4. For any tuple t; in location reverse dominance area of t
and any tuple t; in location dominance area of ty, {tj, t;} < {t;, t;} if
t1 <<t

Proof. Assume that ¢; is in the location reverse dominance area of
t; and tuple ¢; is in the location dominance area of t; and t; << t;.
According to Fig. 5, Dy, ; < Dy ;- Since D*({t;, t;}) — DT ({tj, t1}) =
P(tj)) x Doy + Dy.y) = (1 = P(t))) x (Dy,; — Dyyiy) > 0, 50
that D*({t;, t;})) > D*({t;, t:}). Since N**({t;, t;}) — N**({¢t;, t1}) =
P(t) x N + (1= P(§;)) x (N§) = P(t)) x N — (1= P(t;)) x (Nf) =
(1= P(t)) x (Nf = N{) > 0, s0 that NV ({t;, t;}) > N ({tj, t:}).
Therefore, {t;, t;1} < {t;, t;} and the lemma holds. O

Since Lemma 4 relays on full dominance relationship, a fast
query algorithm of dominance relationship between tuples is valu-
able. In the judgment of full dominance relationship, probabilistic
tuples are processed as certain tuples. Therefore, the LCRS tree [8]
can be used to perform high efficiency full dominance judgment.

| location
| dominance area
't |
2 | [/ .
I #Q____
Tom

reverse location
dominance area

|

.f/. : .[3
|
|

Fig. 5. Dominance area and reverse dominance area.

Once LCRS tree is built, the full dominance relationship between
any two tuples can be given by checking locating partition address
instead of repetitive computation. Moreover, a prepositional tuple
in LCRS tree is impossible to be full dominated by a postpositional
tuple, which is similar to the monotonic sorting in Algorithm 3.
Therefore, Algorithm 4 is given as follows.

Algorithm 4 Extending Pruning of Groups (EGP)

Input: d-dimensional probabilistic data set S.
Output: M(S).

1: LCRS(S)

2: for All tuples in S do
Pick t; from S;
4:  Extend all root groups in root group pool with t;;
5:  NEGP(G;);
6: if&(t;)) < «a then
7
8
9

Put {t;} into complete group pool;
if any group in complete group pool dominate {t;} then

: Prune {t;};
10: else
11: if complete group {t;} dominate any root group in root
group pool then
12: Prune the dominated root groups;
13: else
14: if any group in complete group pool dominate root group
{t;} then
15: Prune {t;};
16: else
17: Put root group {t;} into root group pool;
18: if t; is located in the reverse location dominance area of any
t; in match pool then
19: Find all t, which is located in the location dominance
area of tj;
20: Extend root group {t;} with all tuples in match pool
except ty;
21: else
22: Extend root group {t;} with all tuples in match pool;

23: NEGP(G;);
24:  Put t; into match pool;
25: Return all groups in complete group pool.

The improvement from Algorithm 3 to Algorithm 4 includes the
utilization of LCRS tree and the pruning strategies in extending root
group with tuples in match pool. As illustrated in Section 3.2, too
much groups are created when executing line 18 of Algorithm 3.
With the new pruning method, the number of extended groups is
substantially declined in Algorithm 4. Moreover, LCRS tree helps to
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Table 2

System parameter settings.
Parameter Default value Variation range
Dimensionality 5 4~7
Database size 300 100~10k
Threshold 0.05 0.09~0.01

reduce the repetitive computation of full dominance relationship.
Therefore, the processing time of Algorithm 4 is reduced sharply.

4. Performance evaluation

In this section, we verify the efficiency of our proposed algo-
rithms. Our experiments use both the synthetic datasets and two
real-life datasets. We analyze three aspects on the factors, which
are dimensionality of the datasets d, the threshold «, and the
number of tuples n. All the experiments are conducted on a PC with
Intel® Xeon™ E5-2667 3.3 GHz CPU (contains eight cores), 16 GB
main memory, and under the Ubuntu 15.04 operation system. All
algorithms were implemented in C++.

4.1. Experimental highlights

e M-Skyline query over varieties parameters database can be
finished by Algorithm EGP in a few seconds.

e Real databases are captured from websites. M-Skyline query
over two real databases can be finished by Algorithm EGP in
acceptable waiting time.

4.2. Experiments on synthetic datasets

In order to study the scalability of the proposed algorithms, we
first experiment on the synthetic datasets with three popular dis-
tributions: Independent (Ind), Correlated (Cor) and Anti-correlated
(Ant). Specifically, for the Ind dataset, all attribute values are gen-
erated independently using a uniform distribution; for the Cor and
Ant dataset, if some point is good in one dimension, and it tends to
be good and bad in all of the other dimensionality(s), respectively.
Similar to[9,10], we use uniform distribution to randomly generate
an existential probability of each tuple to make them be uncertain.
The existential probability of each tuple takes a random value
between 0 and 1. In consideration of the reality that hotels and
restaurants are unlikely to have a excessively low positive rates,
such as 0.1, the median of the existential probability is set to 0.8,
which is a typical value in reality.

In this subsection, we report the performance of three algo-
rithms, BA (Algorithm 1), IGP (Algorithm 3), EGP (Algorithm 4)
over one dataset by varying the dimensionality of datasets d, the
disappointed probabilistic threshold «, and the number of tuples n.
Unless specifically stated, each other parameter is set to its default,
which is shown in Table 2. It is important to note that two dimen-
sions of the dimensionality d is location information. All tuples has
a two dimensional spatial characteristics and d — 2-dimensional
non-spatial characteristics. It is noticeable that even for n = 10,
the number of possible group combinations is 9,864,100, which is
computationally intensive. The variation range of n is from 100 to
10k. For reference, the number of hotels in New York and Beijing
on Booking.com is 443 and 910, respectively.

4.2.1. Performance vs. dimensionality d

In the first set of experiments, we study the performance of BA,
IGP and EGP with d varying from 4 to 7 by a step of 1, and the other
parameters are kept to their default values.

The efficiency of the algorithms under various d is depicted in
Fig. 6, where Ind, Cor, and Ant are reported, respectively.

As expected, the performance of the three algorithms, BA, IGP
and EGP, all degrade sharply with the growth of d. It is because in a
high-dimensional space, each tuple has a low probability of being
dominated by other ones. In the same way, each group also has a
low probability to be dominated, which makes the final skyline set
become larger. More query answers lead to higher bandwidth cost.
However, EGP performs much better than the others with different
dimensionality. The time differences between EGP and the other
two algorithms get larger with the increase of dimensionality.

As shown in Fig. 6(a), (b), and (c), considering the Ind, Cor, and
Ant, the performance of both IGP and EGP are obviously influenced,
while BA is almost not influenced. It is because both of IGP and EGP
rely on finding some dominating complete groups to prune root
groups as soon as possible. It is easier for these two algorithms
to establish groups with stronger dominance ability early. Tuples
in Ant database are not easy to be dominated by other tuples.
Therefore, similar to high-dimensional database, it increase the
computing difficulty for IGP and EGP.

4.2.2. Performance vs. database size n

In the second set of experiments, we examine the effect of the
number of database size n on the performance of the M-Skyline
query. The number of database size n varies from 100 to 10k by
a step of threefold and the other parameters kept to their default
values.

Asillustrated in Fig. 7, EGP performs much better than the other
two algorithms. EGP provides not only shortest processing time
but also flattest growth rate when compared with IGP and BA.
This is because EGP establishes some complete group with strong
dominance ability in a short time. Many root groups are pruned
before they are extended to complete groups. In addition, since
LCRS tree is built in the beginning, the checking of full dominance
relationship in EGP is easier than that in IGP. Moreover, tuples that
picked in later period are dominated by many other tuples, which
means any root groups with these tuples are highly possible to
be dominated by some complete groups in complete group pool.
Therefore, the processing time of EGP increases gently.

Considering Cor and Ant, when n becomes larger, their influence
get larger. As illustrated in Fig. 7(b) and (c), the query times of IGP
and EGP with n = 10k are around 20 vs. over 100, and around
5 vs. around 20. It depicts that the efficient processing of a large
database requires early establishment of some complete groups
with strong dominance ability, which is also illustrated in Section
4.2.1.

4.2.3. Performance vs. threshold o

In the third set of experiments, we explore the impact of thresh-
old « on the performance of the algorithms. Specifically, @ varies
from 0.01 to 0.09 by a step of 0.02, and the other parameters are
kept to their default values.

Fig. 8 illustrates the experimental results when we vary o from
0.01 to 0.09, under the Ind, Cor, and Ant distributions. As « in-
creases, the performance of the three algorithms both become bet-
ter. The reason is the size of the qualified combinations of tuples is
sensitive to the probability threshold «. According to Definitions 2
and 6 in Section 2, the larger the probability threshold, the fewer
the complete groups. It means more computation and procedures
are required in extending a root group to complete groups. That
is the reason of all of the three algorithm are influenced by the
threshold «. In addition, it is even harder to establish a complete
group with strong dominance ability under a small threshold value.
Therefore, the query time reduces as « raises.

Since the influence of adjusting the alpha is similar to the corre-
latedness and anti-correlatedness of the database, the differences
between Fig. 8(b) and (c) are smaller than that of Figs. 6 and 7. The
processing times of IGP and EGP are around 2s and 1s in Ind, Cor,
and Ant.
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4.3. Experiments on real datasets

In this section, we evaluate our proposed algorithms over two
real dataset, CarDB and HotDB. Specifically, CarDB includes 45,311
6-dimensional points [11,12]. We consider two numerical
attributes, price and mileage, of 4500 cars. Due to lack of uncer-
tainty and location information in this dataset, similar to [13,12],
we randomly generate the existential probability and location
information of each point. It is a simulation of selecting used
cars from the market. HotDB contains 1120 6-dimensional values,
which represent the comments and positive ratios of hotels in Bei-
jing. It is notable that the two-dimensional location information is
acquired from the most popular map provider, map.baidu.com. The
non-spatial attributes include facilities, service, sanitary condition,
and price, which are acquired from ctrip.com. Clearly, HotDB is a
probabilistic database with spatial information. It is a simulation
of selecting hotel in Beijing.

BA is unable to handle these two databases so that only IGP and
EGP are tested. The experimental results of these two databases are
shown in Fig. 9. The results demonstrate EGP performs better than
IGP in real databases. CarDB is similar to a anti-correlated database
since a car with lower mileage tends to be more expensive. EGP
can handle it with around three seconds while IGP costs near nine

seconds. HotDB is similar to a correlated database since a good
hotel tends to be good at not only service, facility, but also sanitary
condition. EGP and IGP costs around 22 s and 82 s, respectively.
Comparing with Fig. 7(b), EGP costs more time with HotDB, since
HotDB is d = 6 rather than d = 5. It demonstrates that the
dimensionality greatly influence the processing time. In summary,
EGP is also very efficient for real data.

5. Related work
5.1. Skyline queries over certain data

Most of the previous researches focused on how to answer the
query in a computationally efficient way. The approaches for pro-
cessing skyline queries over certain data can be classified into two
categories, which are non-index based approaches and index based
approaches [14,15]. The first category involves solutions that do
not utilize index to organize the databases. It mainly includes Block
Nested Loop (BNL), Sort Filter Skyline (SFS), Sort and Limit Skyline
Algorithm (SalSa), ZSearch, and Objectbased Space Partitioning
(OSP), et al. The OSP in [8] is considered to be the most efficient ap-
proach without index. The other category contains solutions which
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utilize index to accelerate the skyline query. The approaches in the
second category utilize index structures such as R-tree, and ZB-tree
to organize the databases. Some representative approaches based
on index include a Nearest Neighbor (NN) algorithm, a Branch and
Bound (BBS) algorithm, and a ZB-tree algorithm. The BBS algo-
rithm based on R-tree is progressive and acknowledged to be 1/O
optimal.

In addition to the traditional skyline query, many skyline query
variants have also been studied in the literatures. The variants
include distributed skyline query [16], reverse skyline query [14],
monochromatic and bichromatic mutual skyline queries [15], sub-
space skyline query [17], reverse k-skyband and ranked reverse
skyline query [11], top-k skyline query [18], group skyline [19], to
name just a few. In [20], they focused on the skyline query over big
data.

For all of these approaches are geared toward certain data, they
cannot be employed to process uncertain data directly.

5.2. Skyline queries over uncertain data

Uncertain data grows rapidly with the increasing popular-
ity of applications such as data integration, scientific and sensor
databases. Query processing over uncertain datasets has become
an important research topic in the database community, such as
uncertain skyline queries [21-25], uncertain top-k queries [26,27],
location-based queries (LBS) [28,29], recommendation systems
based on uncertain datasets [30,31], etc. The first study about sky-
line query over uncertain datasets, namely P-Skyline, was reported
by Pei et al. [7]. It has been developed to return tuples whose sky-
line probabilities are larger than a specified probabilistic threshold.
This pioneering work has inspired a number of follow-up studies.
Ding and Jin proposed the notation of distributed skyline queries
over uncertain data and designed two computation-efficient and
communication-efficient algorithms [9]. Lian and Chen proposed a
novel and important query in uncertain databases, the probabilistic
group subspace skyline query (PGSS), and presented an efficient
query procedure [32]. Lian and Chen focused on the probabilistic
reverse skyline, considering both monochromatic and dichromatic
cases [33]. Zhang et al. studied the problem of efficiently com-
puting skylines against sliding windows over an uncertain data
stream [34]. Those previous studies are mostly based on P-Skyline.
The appropriate user-specified probability threshold is one of the
challenges for the P-Skyline.

Different from P-Skyline, a new skyline query for uncertain
databases [35], called U-Skyline, is developed. It reports a set of
tuples having the highest probability. The processing of U-Skyline
query is an NP-hard problem and in the worst case it needs to
exhaust all the subsets of an uncertain database.

6. Conclusions and further study

Traditional skyline queries over uncertain database are unable
in providing alternative answers. The potential sunk cost is also
neglected by traditional skyline queries. In this paper, we first
propose the M-Skyline query to select groups of sequential tu-
ples that provides recommendations that takes consideration of
sunk cost and alternative choices. An efficient algorithm, IGP is
introduced to process the M-Skyline over uncertain database in
acceptable time. In IGP, several efficient technologies, including
complete group pruning and reverse location dominance area, are
employed. Moreover, extensive experiments have been conducted
to clarify the effectiveness and the efficiency of our algorithms.

As for our future work, on the one hand, considering the incom-
plete databases are common in reality, we will study M-Skyline
query over incomplete databases. On the other hand, we are go-
ing to study approximate M-Skyline query algorithms that return
quickly a good approximation of results. In particular, with the
explosion of Internet information content, it requires query algo-
rithms to report results in time. We plan to extend our approaches
to parallel and distributed query processing algorithms for the
future work.
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