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ABSTRACT
The tenant network stack is implemented inside the virtual
machines in today’s public cloud. This legacy architecture
presents a barrier to protocol stack innovation due to the tight
coupling between the network stack and the guest OS. In
particular, it causes many deployment troubles to tenants and
management and efficiency problems to the cloud provider.
To address these issues, we articulate a vision of providing
the network stack as a service. The central idea is to decou-
ple the network stack from the guest OS, and offer it as an
independent entity implemented by the cloud provider. This
re-architecting allows tenants to readily deploy any stack in-
dependent of its kernel, and the provider to offer meaningful
SLAs to tenants by gaining control over the network stack. We
sketch an initial design called NetKernel to accomplish this
vision. Our preliminary testbed evaluation with a prototype
shows the feasibility and benefits of our idea.

1 INTRODUCTION
Virtual machines (VMs) have been a great abstraction for
computing. In public clouds, it provides a clear boundary be-
tween the provider and the tenants, enabling them to innovate
independently. For example, in networking, the conventional
separation of concern is that the cloud provider is responsi-
ble for providing virtual NICs as the abstraction and tenants
maintain their own network stacks. The tenant network stack
is implemented inside the VM (as shown in Figure 1a).

While this provides strong isolation, when it comes to
protocol stack evolution, the legacy architecture presents a
barrier due to the tight coupling between the network stack
and the guest operating system (OS). In particular, it causes
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many deployment problems to tenants and management and
efficiency problems to the cloud provider.
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Figure 1: Today’s VM network stack on the left, and net-
work stack as a service on the right.

First, tenants in general find it painstaking to deploy or
maintain new network stacks in public clouds. Since a net-
work stack or a specific protocol is tied to some particular
kernel, it cannot be directly used with other kernels. For ex-
ample Google’s recent BBR congestion control protocol is
implemented in Linux [10]; Windows or FreeBSD VMs are
then not able to use BBR directly. Porting a protocol to a
different kernel requires tremendous efforts and is both time-
consuming and error-prone, not to mention the fact that many
tenants do not have the expertise to do it. Changing the guest
kernel just because of the network stack is even less feasible,
since it is extremely difficult to port all the existing applica-
tions to a new environment.

Even when a tenant’s choice of network stack is available
for her kernel, deploying and maintaining the stack usually
incur high cost and performance penalty. Imagine that a tenant
uses Linux VMs and wishes to deploy new userspace stacks,
such as mTCP [22] or F-stack [5]. The tenant then needs to
closely track the development of the project, merge or modify
the code for her own environment, and test and debug to
ensure compatibility and stability. Individually managing the
stack further results in redundant efforts from many tenants.

Second, the cloud provider suffers from the inability to effi-
ciently utilize her physical resources for networking because
the tenant network stack is beyond her reach. It is difficult to
meet or even define networking performance SLAs for tenant
as we cannot explicitly provision or adjust resources just for
the network stack. It is also impossible to deploy optimized
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network stacks with better efficiency in tenant VMs, although
many such implementations are available in our community
[24, 30, 35].

We thus put forth a vision of network stack as a service to
facilitate bringing innovations to all layers of the stack. The
central thesis of this vision is to decouple the VM network
stack from the guest OS and offer it as an independent entity
(say a VM) by the cloud provider. Figure 1(b) depicts the
idea. We keep the application interfaces in the guest, such as
BSD sockets for TCP/IP and Verbs for RDMA, intact and use
them as the abstraction boundary instead of the virtual NICs.
Packets are then handled outside the tenant VM in a network
stack module (NSM) provided by the provider, whose design
and implementation are transparent to tenants. Each VM has
its own NSM whose resources are dedicated to providing
networking services, and tenants pay for it in addition to the
application VM charges.

We believe decoupling network stack from the guest OS,
thereby enabling network stack as a service, fundamentally
solves the problems discussed above. Tenants now can deploy
any stack independent of its guest kernel without any effort
or expertise. The provider can now offer meaningful SLAs
to tenants by gaining control over the network stack. Overall
the new architecture allows rapid and flexible deployment of
more efficient network stacks, accelerating the innovation in
the public cloud (§2).

Network stack as a service potentially opens up a line of
inquiry on systems design and optimization, and certainly
entails many possible solutions. We present in this paper an
initial design called NetKernel that achieves this vision with-
out radical change to existing tenant VMs (§3). We implement
an initial prototype of NetKernel based on KVM (§4). We port
the TCP/IP stack from Linux kernel 4.9, including the recent
BBR protocol [10] as our NSM. Our preliminary evaluation
on a testbed with 40 GbE NICs shows that NetKernel’s de-
sign achieves comparable performance with the native stack
implementation inside the guest kernel. We also show that a
Windows VM running BBR is feasible using NetKernel as
one of its new usecases (§4). We identify and discuss open
research questions in §5, and summarize related work in §6
before concluding the paper.

2 NETWORK STACK AS A SERVICE
Separating the network stack from the guest OS marks a
significant departure from the way networking is provided to
VMs nowadays. In this section we elaborate why our vision
of network stack as a service is a better architectural design.
We also discuss the implications of the new architecture in a
public cloud to defend our position.

2.1 Benefits
Network stack as a service offers three important benefits that
are missing in today’s architecture: deployment flexibility to
tenants, efficiency to the provider, and faster innovation with
better evolvability to the community.

First, tenants now have greater flexibility to choose and
deploy any network stack independent of its guest OS. A
Windows VM now can opt to use a Linux stack which is not
feasible in current public clouds. They may also request a
customized stack (say RDMA) for their applications. These
benefits can be realized without any development or mainte-
nance effort or expertise from the tenant side. The network
stack is maintained by the provider transparent to tenants.
Applications do not need to change since the classical net-
working APIs are preserved in our new architecture.

Second, providers can now offer meaningful SLAs to ten-
ants and charge them accordingly. By gaining control over
the stack, they can adopt various strategies to guarantee the
networking performance delivered to the VMs (e.g. through-
put, latency), while optimizing their resource usage. They
can deploy an optimized stack to reduce the CPU overhead;
dynamically scale up the network stack module with more
dedicated cores; or scale out with more modules to support
higher throughput to a large number of concurrent connec-
tions. They can also exploit the multiplexing gains by serving
multiple tenant VMs with the same network stack module.

Finally, we believe innovation in networking can also be
accelerated as a result of having network stack as a service.
Architecturally any network stack can be used for tenant VMs
without constraint on guest kernel, providing a path towards
protocol stack evolution. Developers only need to focus on
designing and implementing new protocols, not how to make
them available on multiple OSes.

2.2 Implications
We discuss several implications as a result of providing net-
work stack as a service.
Containers. Our discussion in this paper is centered around
VM based virtualization that covers the vast majority of usage
scenarios in a public cloud. Containers on the other hand are
gaining tremendous popularity as a lightweight and portable
alternative to VMs [4]. A container is essentially a process
with namespace isolation. It thus relies on the network stack
of its host, be it a bare-metal machine or a VM.

We find that in EC2 [2], Azure [3], and Google Container
Engine [6], users have to launch containers in a VM. There-
fore network stack as a service readily benefits containers
running in VMs. For containers running directly on bare-
metal machines, since they have to share the host machine’s
network stack, they suffer from the same deployment and
efficiency problems mentioned in §1. The same arguments
can be made here to move away from the legacy architecture
and instead decouple the network stack from the OS, though
the specific design may differ in many ways.
Security. Most of the security protocols such as HTTPS/TLS
work at the application layer. They can work as usual with
network stack as a service. One exception is IPSec. Due to the
certificate exchange issue, IPSec does not work directly in our
design. However, in practice IPSec is usually implemented at
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Figure 2: NetKernel design compared to existing VM network stack.

gateways instead of end-hosts. We believe the impact is not
serious.
Removal of NIC in Guest. Due to the change in the abstrac-
tion boundary, the NICs no longer exist in the tenant VMs,
which may lead to some changes for tenants. For example
tunning the kernel TCP/IP stack via sysctl or tuning the
NIC becomes infeasible in our architecture. We argue this is
a sensible tradeoff since the provider now controls the stack
and offers much better SLA for networking, minimizing the
need of such performance tuning. Further network stack as
a service is offered as an additional service; one can choose
not to use it and still rely on the network stack inside her VM
just like before.

3 DESIGN
We now outline the initial design of NetKernel, a framework
that enables network stack as a service in today’s cloud.

3.1 Overview
Figure 2(a) shows the legacy VM network stack as the base-
line. The TCP/IP stack is usually implemented in the guest
kernel. In some cases, the VM uses a userspace stack [1, 5, 22].
A virtual NIC (vNIC) usually connects the VM to a virtual
overlay switch (vSwitch) in the hypervisor, such as OVS
or Hyper-V Switch, which routes packets and performs ac-
counting, monitoring, etc. In some cases the overlay switch is
implemented as an embedded switch on special hardware so
processing can be offloaded for high performance [13, 16, 20].
This way VM’s traffic can bypass the host to the physical NIC
(pNIC) by using SR-IOV for better performance.

NetKernel aims to separate the network stack from the
guest without requiring radical change to the tenant VM, so
that it can be readily deployed. As depicted in Figure 2(b)
the network API methods are intercepted by a NetKernel
GuestLib in the guest kernel. The GuestLib can be readily de-
ployed as a kernel patch and is the only change we make to the
tenant VM. Network stacks are implemented by the provider

on the same physical host as Network Stack Modules (NSMs).
The NSM may take various forms: VM, container, or even
a hypervisor module, with different tradeoffs in deployment,
performance, etc. We intentionally keep the design general
at this point and defer the specific realization of the NSM to
future work. Inside the NSM, the ServiceLib interfaces with
the network stack and GuestLib in the tenant VM. The NSM
connects to the overlay switch, be it a virtual switch or a hard-
ware one, and then the pNICs. Thus our design also supports
SR-IOV. A NetKernel CoreEngine runs on the hypervisor
and is responsible for setting up the NSM when a VM boots.
It also facilitates the communication between GuestLib and
ServiceLib.

To support fast communication between the tenant VM and
the network stack in the NSM, NetKernel employs two com-
munication channels based on shared memory that quickly
move data around. The first is a small shared memory region
between a tenant VM or a NSM and the CoreEngine on the
hypervisor. This region consists of a set of queues, and are
used to transmit event metadata and descriptors for applica-
tion data across VM and NSM. The second is a huge page
region shared between a VM and its corresponding NSM that
is used to directly write or read actual data. Each pair of VM
and NSM is allocated unique huge pages to ensure security
and isolation.

3.2 Transport Service via Shared Memory
We now explain in detail how transport service is provided
via shared memory in NetKernel as shown in Figure 3. We
use TCP as the example.

All communication between GuestLib in VM and Ser-
viceLib in NSM is done with the help of a data structure
called NetKernel Queue Element, or nqe. It contains opera-
tion ID, VM ID, and fd for the VM, or operation ID, NSM ID,
and connection ID (cID) for NSM. It also has a data descriptor
if necessary, which is a pointer to the huge pages for data.
Each nqe is copied between VM queues and NSM queues
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by CoreEngine. It is small in size and copying incurs negli-
gible overhead [21]. During the process, CoreEngine maps
<VM ID, fd> to the corresponding <NSM ID, cID> and vice
versa using a connection mapping table as shown in Figure 3.
GuestLib, ServiceLib, and CoreEngine interact with queues
using batched interrupts.
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Figure 3: Transport service. Shaded areas indicate
shared memory regions.

When an application registers a socket by invoking socket(),
GuestLib intercepts the call and adds a nqe with the request
into the VM job queue. CoreEngine is notified with a batched
interrupt later about this new event among others in the VM
job queue. It immediately assigns a new socket fd, wraps
it with a new nqe, inserts it to VM completion queue, and
notifies GuestLib using a batched interrupt. The application
socket() is then returned. CoreEngine also independently
applies for a new socket from the NSM by putting a new nqe
into NSM job queue. ServiceLib gets a batched interrupt from
the job queue later and forwards these requests to NSM’s
network stack. The response is again contained in nqes and
copied to NSM completion queue. CoreEngine then copies
them into VM completion queue. It also adds a new entry into
its connection mapping table for the new connection.

The connect() call is handled in largely the same way.
GuestLib adds a nqewith the request into VM job queue. The
application is returned right away. CoreEngine then copies
the nqe to NSM job queue with connection mapping, and
the NSM’s network stack handles this request. The result is
returned by ServiceLib putting a nqe into NSM completion
queue and CoreEngine copying the nqe into the VM comple-
tion queue (with connection mapping). GuestLib returns the
result of connect() by event notification (e.g. epoll()).

When the application sends data by send(), GuestLib
intercepts the call and puts the data into the huge pages. Mean-
while it adds a nqe with a write operation to VM job queue
along with the data descriptor. Then the application is re-
turned, and the nqe is copied across queues as before. Ser-
viceLib gets data from the huge page address and sends it to
its network stack via the corresponding connection given in
the nqe.

Packets are received by the NSM and go through the net-
work stack for transport processing. The network stack is

modified with callback functions to ServiceLib so NetKer-
nel is involved when processing is done. When data is re-
ceived ServiceLib puts data into the huge pages, and adds a
nqe to NSM receive queue as shown in Figure 3. When an
ACK to SYN/ACK is received a new nqe is also inserted to
the NSM receive queue. GuestLib in turn signals the corre-
sponding socket of the application for epoll_wait() and
accept() for both cases. For an accept event CoreEngine
generates a new socket fd on behalf of the VM for the new
flow and inserts an entry to the connection mapping table.
Finally for recv(), GuestLib simply checks and copies new
data in VM receive queue if any.

We have described asynchronous operations so far. NetKer-
nel can readily support synchronous operations, in which case
the application is not returned by GuestLib until it obtains a
nqe from the VM completion queue.

In addition, the job queues and completion queues can be
implemented as priority queues to handle connection events
and data events separately to avoid the head of line blocking.

4 PRELIMINARY RESULTS
We present our preliminary implementation and results now.

4.1 Prototype
We have implemented a simple prototype of NetKernel to
verify the feasibility of our idea. We run our prototype on two
servers each with Xeon E5-2618LV3 8-core CPUs clocked
at 2.3 GHz, 192 GB memory, and Intel X710 40Gbps NICs.
We use QEMU KVM 2.5.0 for the hypervisor and Ubuntu
16.04 with Linux kernel 4.9.0 for both the host and the guest
OSes. For the Windows guest, we choose Windows Server
2016 (Datacenter). The NetKernel prototype is about 3000
lines of C code.
GuestLib. We implement GuestLib in userspace for fast
prototyping. GuestLib uses LD_PRELOAD [8] to override
the socket API calls from glibc, including socket(),
connect(), recv(), send(), setsockopt(), etc. We
defer the support of event based API such as select() and
epoll() to future work. For Windows VMs we create a
similar library to intercept Windows programs. GuestLib uses
polling to process the queues for simplicity.
Queues and Huge Pages. The huge pages are implemented
based on QEMU’s IVSHMEM. The page size is 2 MB and
we use 40 pages. The queues are ring buffers implemented as
much smaller IVSHMEM devices.
ServiceLib. ServiceLib in the NSM continuously polls the
queues to execute the operations from GuestLib via NetK-
ernel CoreEngine. All the operations from the queues are
diverted to the socket API of the network stack in the NSM.
For example, if a connect operation arrives, ServiceLib calls
the connect() backend function of the network stack in
NSM. When packets arrive, ServiceLib now implements two
callback functions: nk_new_data_callback() and
nk_new_accept_callback() to process new data and
new connections, respectively.
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NSMs. We use KVM VMs as NSMs to host different network
stacks with isolation in the prototype. We implement NSMs
by porting the TCP/IP stack in Linux kernel 4.9 including
Google’s recent BBR [10]. Each NSM is assigned 1 CPU
core, 1G RAM, and one virtual function (VF) of an Intel
X710 40Gbps NIC with SR-IOV in our server.
NetKernel CoreEngine. The CoreEngine is implemented as
a daemon on the KVM hypervisor.

4.2 Microbenchmarks
We report some microbenchmarks of NetKernel here. First
we use the TCP Cubic NSM and compare it to running TCP
Cubic natively in a VM. Figure 4 shows the result. We observe
the NetKernel NSM achieves virtually same throughput with
running TCP Cubic natively in the VM. Both can achieve line
rate (∼37 Gbps) when there are more than two flows.
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Figure 4: Throughput of TCP Cubic and NetKernel TCP
Cubic NSM. The chunk size for the huge page operations
is 8 KB.

Chunk Size 64B 512B 1KB 2KB 4KB 8KB
Latency 8ns 64ns 117ns 214ns 425ns 809ns

Table 1: Memory copying latency in NetKernel.

We then measure the communication overhead within NetK-
ernel. NetKernel has two types of transmissions for nqes and
data chunks. A nqe is copied between VM and NSM via
CoreEngine. The cost of this is ∼12ns per event. For data
chunks, Table 1 shows the latency of memory copying be-
tween GuestLib and ServiceLib with random address reads.
We find that even a large chunk of 8KB costs less than 0.81µs
to copy. At the same time, NetKernel can achieve ∼64Gbps
(64B) and ∼81Gbps (8KB) between GuestLib and ServiceLib
for each core. This demonstrates that NetKernel is unlikely to
be the bottleneck in data transmission.

4.3 Flexibility
To demonstrate the flexibility benefit of providing network
stack as a service, we conduct the following experiment. We
use a Windows VM with the NetKernel BBR NSM, so traffic
from the Windows VM actually uses the BBR congestion
control. We also use a Windows VM running its default C-
TCP in kernel as well as a Linux VM running Cubic and

BBR (without NetKernel) for comparison. The TCP server
is located in Beijing, China, and the client is in California,
USA. The uplink bandwidth of the server is 12 Mbps and the
average RTT is 350 ms.
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Figure 5: A Windows VM utilizes BBR by NetKernel,
achieving similar throughput with original Linux BBR.

Figure 5 depicts the throughput results averaged over 10s.
The Linux VM with default TCP Cubic obtains the lowest
throughput of 2.61 Mbps, and the Windows VM with default
C-TCP achieves 8.60 Mbps. Using the NetKernel BBR NSM
the Windows VM has a much better result of 11.12 Mbps,
consistent with the performance of the unmodified BBR in
the Linux VM (11.14 Mbps). This shows that NetKernel has
the potential to allow VMs to flexibly use different network
stacks with close-to-native throughput performance.

5 RESEARCH AGENDA
Decoupling network stack from the guest OS can potentially
open up many new avenues of research. Here we discuss a
few important areas that require immediate attention and may
lead to more future work.
NSM form. The NSMs can take various forms as mentioned
in §3. They may be (1) full-fledged VMs with a monolithic
kernel, which is used in our NetKernel prototype; (2) light-
weight unikernel-based [12, 33] VMs with a minimal set
of libraries to run the network stack; or (3) even containers
or modules running on the hypervisor. Each choice implies
vastly different tradeoffs. For example, VM based NSMs is
the most flexible and can readily support existing network
stacks from various OSes. It also provides good isolation. On
the other hand VMs consume more resources and may not
offer best performance due to various overheads. A container
or a module based NSM consumes much less resources and
can offer better performance. Yet it is much more challenging
to port a complete network stack to a container or a hypervisor
module, while achieving memory isolation at the same time
[29]. A thorough investigation into the design choices and
their tradeoffs for NSM is more than necessary to achieve the
vision of network stack as a service.
Centralized management and control. Network stack as a
service (NSaaS) facilitates centralized network management
and control. Since the network stack is maintained by the
provider, management protocols such as failure detection [17]
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and monitoring [28] can be deployed readily as NSMs. Mean-
while, some new protocols such as Fastpass [31] and pHost
[14] require coordination among end-hosts and are deemed
infeasible for public clouds. They can now be implemented
as NSMs and deployed easily for all tenants. In this regard,
NSaaS removes the hurdle of managing the tenant network
stack in the cloud, enabling new research to quickly develop
in this area.
Container. Though we focus on VMs here, containers can
also benefit greatly from NSaaS. A critical limitation of the
current container technology is that containers have to use
the host’s network stack. There are many cases where it is
actually better to use different stacks for containers running
on the same host. A container running a Spark task may use
DCTCP for its traffic, while a web server container may need
BBR or CUBIC. Enabling NSaaS for containers is one of our
ongoing work.
Pricing model and accounting CPU and RAM. Network
stack as a service can spur research on new pricing mod-
els. One may charge tenants based on the number of NSM
instances or number of cores, even CPU and memory uti-
lization on average per instance used for example. One may
also use SLA based pricing, based on for example the maxi-
mum number of concurrent connections supported, maximum
throughput allowed, etc.
Resource efficiency and optimization. Finally, much can
be done in various aspects to optimize the system design
for NSaaS. Take NetKernel as an example. The control and
data flows between the tenant VM and NSM require frequent
communication via the hypervisor (done by CoreEngine in
NetKernel). We use polling for fast prototyping now. More
efficient soft interrupts (with batching) or hypercalls can pro-
vide low latency while saving precious CPU cycles here. Also
the performance overhead of VM-NSM communication is
very small as shown in §4.2, but may still penalize applica-
tions especially when SR-IOV is used for host bypassing.
The latency overhead may also affect the scalability of han-
dling many concurrent short connections [24]. It is possible
to use more efficient IPC mechanisms or even implement
NetKernel’s CoreEngine in embedded hardware switch [13]
to reduce this overhead.

The resource allocation and scheduling of the NSMs also
needs to be strategically managed and optimized when we use
a NSM to serve multiple VMs concurrently while providing
QoS guarantees.

6 RELATED WORK
We survey three lines of work closely related to ours.

There are many novel network stack designs that improve
performance. The kernel TCP/IP stack continues to witness
optimization efforts in various aspects [24, 30, 35]. On the
other hand, since mTCP [22] userspace stacks based on high
performance packet I/O have been quickly gaining momen-
tum [1, 7, 26, 27, 32, 36, 37]. Beyond transport layer, novel
flow scheduling [9] and end-host based load balancing schemes

[18, 23] are developed to reduce flow completion times. These
proposals are designed to solve specific problems of the stack
with targeted applications or scenarios. This paper focuses
on a broader and fundamental issue: how can we properly
re-factor the VM network stack, so that tenants can readily
use a network stack of their choice and enjoy meaningful
performance SLAs, without worrying about maintenance or
deployment? We advocate to decouple network stack from the
guest OS as a promising answer in this paper. These solutions
can be potentially deployed as different NSMs on NetKernel.

There is some recent work on enforcing a uniform conges-
tion control logic across tenants without modifying the VMs
[11, 19]. The differences between this line of work and ours
are clear: First these approaches require packets to go through
two different stacks, one in the guest kernel and another in
the hypervisor, leading to performance and efficiency loss.
NetKernel does not suffer from these problems. Second they
focus on congestion control while our work targets the entire
network stack.

Lastly, in a broader sense, our work is also related to the
debate on how an OS should be architected in general, and
microkernels [15] and unikernels [12, 25] in particular. Mi-
crokernels take a minimalist approach and only implement
address space management, thread management, and IPC in
the kernel. Other tasks such as file systems and I/O are done in
userspace [34]. Unikernels [12, 25] aim to provide various OS
services as libraries or modules that can be flexibly combined
to construct an OS. Different from these works that require
radical changes to the OS, we seek to flexibly provide the net-
work stack as a service without re-writing the existing guest
kernel or the hypervisor which are largely monolithic kernels.
In other words, our approach brings some key benefits of
microkernels and unikernels without a complete overhaul of
existing virtualization technology.

7 CONCLUSION
We have advocated a vision of network stack as a service in
public cloud in this position paper. Decoupling the network
stack from the guest OS provides flexibility and efficiency
benefits for tenants and providers, and accelerates innovation
without being constrained by the network stack in the guest
VM. We also sketched our initial NetKernel design as a step
to realize this vision and presented preliminary implemen-
tation results to demonstrate the feasibility of our idea. We
showed that network stack as a service opens up new design
space and identified many research challenges along the way.
Going forward, we hope more discussion and effort can be
stimulated in the community to fully accomplish this vision.
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