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ABSTRACT
Online recommendation systems play critical roles in enhancing
user experience by helping them find the most interesting videos
from a vast amount of content. However, the existing recommenda-
tion modules and video transmission modules in the industry often
operate independently, resulting in the recommendation model pro-
viding some videos that cannot be transmitted within the specified
deadlines successfully. This can lead to an inferior watching expe-
rience for users and resource waste for video providers. To address
this, we propose a novel framework called NetRec, which for the
first time optimizes the recommendation quality by jointly consid-
ering the network transmission. We accomplish this by re-ranking
the top-N videos obtained from the recommendation system and
selecting the top-M (M is approximately half of N) videos that pro-
vide the maximum overall revenue, e.g., video playing time while
considering the network status. The entire system comprises net-
work measurement, video quality estimation, and multi-objective
optimization modules. Real-world Internet results show that our
framework can increase users’ video playing time by 20% to 160%.
Furthermore, we provide several promising directions for further
improving the video recommendation quality under our NetRec
framework, which jointly considers the network for the recommen-
dation.

CCS CONCEPTS
• Networks→ Application layer protocols; Network measure-
ment.

KEYWORDS
Network measurement, multi-objective recommendation, video
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1 INTRODUCTION
Online short videos (TikTok, Shorts, etc.) have begun to occupy
the majority of the Internet traffic [2] and proven to have sig-
nificant commercial value [20]. Existing short video platforms
have implemented recommendation systems to encourage users to
spend more time on them [6]. Video recommendation models have
shown strong abilities to better match user interests and increase
platform revenue over the past decade. However, improving the
recommendation model accuracy is now facing the problem of
diminishing marginal utility [16]. In this paper, we point out that
considering users’ network status when recommending videos and
taking into account both the probability of successful transmission
and the video content is a highly promising direction to further
improve the video recommendation revenue1. We find that even
with commonly used algorithms, considerable revenue gains can
be achieved, which is difficult to achieve solely relying on existing
recommendation models.

Specifically, for online short video platforms [6], users may play
a video for a while if they are interested in it, or just quickly
“swipe” to another one if they are not attracted by the video. The
recommendation system helps the server to dynamically choose
several possibly attractive videos according to the users’ real-time
feedback and transmit them to users through the network. These
recommended videos need to be transmitted before a very short
deadline (before the previous one is swiped), otherwise, if exceeding
the deadline, users can only swipe to some locally-cached videos
whichmay bemuch less attractive and users may leave. For example
in Kuaishou [5] (one of the largest short video platforms in China),
a server tries to recommend and transmit 6 videos to a user within
a 3-second deadline.

Due to the volatility of network status, however, not all the
recommended videos may be successfully received by the user.
Fig. 1 shows that if not considering the network, the existing
recommendation model may lose more than 90% video playing time
under poor network conditions (experiment details in §4). Although
there are previous works [1, 4, 8, 12] attempting to accelerate the
video transmission by dynamically choosing the video bitrate based
on the user’s network status, they rarely consider the selection of
videos. Particularly, since the video sizes may vary, even a video
that may be more attractive according to the recommendation
model may not be able to be transmitted to the user due to the poor

1In practice, the recommendation revenue is evaluated as the total video viewing time
of all users [5].
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Figure 1: Average video playing time of an existing
recommendation model which does not consider network
status (in practice) and an ideal one that jointly considers
network status (ideal).

network. In this paper, we will, for the first time, focus on how to
select videos that can better balance video attractiveness and the
transmission success rate to improve the overall recommendation
revenue.

We propose a novel recommendation framework called Ne-
tRec, which works on the server-side along with the existing
recommendation model but jointly considers network status. First,
NetRec applies a passive bandwidth measurement system and
monitors the previous round’s video download bandwidth in real
time as the input for the next round’s algorithm. Second, we
design a multi-objective video selection module based on the
knapsack algorithm [15] to re-rank the initial video list given
by the recommendation model under the constraints of network
bandwidth. We evaluate the effectiveness of our framework based
on a real-world open source dataset from a top-tier short video
provider [5]. The experimental results show that our algorithm
achieves significant gains both in the lab, on campus, and on
the Internet. Real-world Internet results show that NetRec can
increase users’ video playing time by 20% to 160% even only using
simple algorithms. NetRec has shown the possibility of a novel
and important direction for network-and-recommendation joint
optimization. Moreover, through both theoretical and experimental
analysis, we show that there are rich opportunities to achieve
even better performance in this direction, including more accurate
network status prediction and advanced selection algorithms that
are robust to network fluctuations.

2 RELATEDWORK
Recommendation Algorithms: There are a lot of algorithms
mainly focusing on recommending the most attractive videos,
through optimizations methods based on click-through rate [7,
10], graph learning [11], causal inference [3, 20], debiasing [14],
and collaborative filtering [13, 19], etc. However, they have not
considered the network status for transmitting the recommended
videos.
VideoBit RateAdjustment: Previousworks [1, 4, 8, 12] adaptively
adjust the video quality according to the network status during
video playing. They may improve users’ viewing experience,
however, they do not affect which videos would be recommended
to the user.
Network Bandwidth Estimation: Network bandwidth estimation
is commonly used to optimize transport layer protocols by adjusting
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congestion control algorithms based on the current network
condition [17, 18]. [9] also uses bandwidth estimation in video
transmission to cut down unnecessary video stalls and quality
drops. However, none of them uses network information for video
selection.

3 SYSTEM DESIGN
3.1 Overview
We propose a framework named NetRec which integrates network
information into a recommendation system for better user engage-
ment. NetRec leverages network information such as bandwidth to
calculate the remaining transmission time for each video. Knowing
the transmission time of each video, the server re-ranks the initial
list given by the prior recommendation algorithm to select𝑀 new
videos which not only have higher estimated playing time but also
can be successfully delivered to users within a deadline 𝑇 , thus
achieving better performance.

Our design is divided into three main parts, as shown in Figure
2. The first part is video quality estimation, which predicts
the quality of videos. In this paper, quality is represented by the
estimated playing time, but other metrics such as the probability
of a user clicking the like button can also be used. In existing
video recommendation systems, the top M videos with the highest
estimated playing time are directly delivered to users. In our NetRec,
we consider network status by expanding the video set from M
videos to N videos and feeding the top N videos to the next step. The
second part ismulti-objective re-ranking, which takes the top N
videos from the video quality estimation module as input. For each
video in this phase, the remaining transmission time is calculated
based on bandwidth information and video size, in addition to the
estimated video quality. We propose a multi-objective re-ranking
algorithm to select the top M videos whose total playing time is
the largest under certain network conditions. Finally, the third part
is bandwidth measurement, which measures dynamic network
bandwidth and provides this information to the re-ranking module
for better decision-making.

3.2 Video Quality Estimation
The primary objective of short video recommendation is to estimate
video quality for a given user. Video quality reflects the user’s
preference for the video. There are various metrics to measure

2

151



Beyond the Content: Considering the Network for Online Video Recommendation APNET 2023, June 29–30, 2023, Hong Kong, China

Algorithm 1: Knapsack Algorithm
Data: 𝑁 : candidate set size, 𝑇 : transmission deadline, 𝑏𝑤 :

network bandwidth, 𝑏𝑟 : video bit rate, 𝑑𝑢𝑟 : video
duration, 𝑒𝑃𝑙𝑎𝑦𝑇 : estimated playing time

Result: 𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 [𝑖] [ 𝑗] (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑇 ): max
playing time when 𝑣𝑖𝑑𝑒𝑜𝑖 is selected under the
condition that the total transmission time ≤ j

1 Function Knapsack(𝑇 , 𝑏𝑤 , 𝑏𝑟):
2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛;
3 for 𝑖 ← 1 to 𝑁 do 𝑡𝑥𝑇𝑖𝑚𝑒 [𝑖] = 𝑑𝑢𝑟 [𝑖 ]×𝑏𝑟 [𝑖 ]

𝑏𝑤
;

4 for 𝑖 ← 1 to 𝑁 do
5 for 𝑗 ← 1 to 𝑇 do

𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 [𝑖] [ 𝑗] = 𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 [𝑖 − 1] [ 𝑗] ;
6 for 𝑗 ← 1 to 𝑇 do
7 𝑡𝑒𝑚𝑝 =

𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 [𝑖 − 1] [ 𝑗 − 𝑡𝑥𝑇𝑖𝑚𝑒 [𝑖]] + 𝑒𝑃𝑙𝑎𝑦𝑇 [𝑖] ;
8 if 𝑡𝑥𝑇𝑖𝑚𝑒 [𝑖] ≤ 𝑗 and

𝑡𝑒𝑚𝑝 > 𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 [𝑖 − 1] [ 𝑗] then
𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 [𝑖] [ 𝑗] ← 𝑡𝑒𝑚𝑝 ;

9 end
10 end
11 return 𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙

video quality, such as estimated playing time, liking probability, or
sharing probability. In this paper, we use estimated playing time
as the metric to measure video quality. Numerous models have
been proposed to estimate video quality accurately, taking into
account video features and the user’s viewing, liking, or sharing
history. Training an accurate model is beyond the scope of this
paper. Our NetRec framework can easily integrate with existing
recommendation systems and reuse their video quality estimation
models. We evaluated our framework on a real-world open-source
dataset from a top-tier video recommendation platform [5] to
provide video quality estimation results.

3.3 Multi-objective Re-ranking
The main goal of this sub-module is to re-rank the initial video
list selected by the existing recommendation algorithm. Our re-
ranking algorithm needs to work in a multi-objective manner,
taking into account not only the video quality but also the likelihood
of successful delivery to the user. The problem of themulti-objective
re-ranking module can be formulated as follows:

How to select a set of M videos that can achieve the highest total
video quality and be transmitted before strict𝑇 deadline under certain
network bandwidth and video size?

Based on the above formulation, the problem can be regarded
as the optimization problem and be solved using Knapsack algo-
rithm [15], which is shown in Algorithm 1. We iterate through each
video and consider two choices when putting it into the knapsack:
either to put it or not to put it. We update the 𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 with the
optimal choice between these two options. The total re-ranking
algorithm is shown in Algorithm 2.

Algorithm 2:Multi-objective Re-ranking Algorithm
Data: 𝑁 : candidate set size,𝑀 : number of video to be

selected, 𝑇 : transmission deadline, 𝑏𝑤 : network
bandwidth, 𝑏𝑟 : video bit rate, 𝑑𝑢𝑟 : video duration,
𝑒𝑃𝑙𝑎𝑦𝑇 : estimated playing time, 𝑐𝑎𝑛𝑑 : candidate set

Result: 𝑟𝑒𝑡 [1...𝑀]: selected top M videos
1 Function videoSelection(𝑐𝑎𝑛𝑑 , 𝑇 , 𝑏𝑤 , 𝑏𝑟 ,𝑀):
2 𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 ← 𝐾𝑛𝑎𝑝𝑠𝑎𝑐𝑘 (𝑇,𝑏𝑤,𝑏𝑟 )

for 𝑖 ← 𝑁 to 1 do
3 if 𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 [𝑖] [ 𝑗] ≠ 𝑑𝑝𝑀𝑎𝑥𝑉𝑎𝑙 [𝑖 − 1] [ 𝑗] then
4 𝑟𝑒𝑡 .insert (𝑖) ;
5 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1 ;
6 𝑗 ← 𝑗 − 𝑐𝑎𝑛𝑑 [𝑖] .𝑡𝑥𝑇𝑖𝑚𝑒 ;
7 end
8 if 𝑐𝑛𝑡 < 𝑀 then
9 choose Top(𝑀 − 𝑐𝑛𝑡 ) videos with larger 𝑒𝑃𝑙𝑎𝑦𝑇 in

𝑐𝑎𝑛𝑑 − 𝑟𝑒𝑡 ;
10 else if 𝑐𝑛𝑡 > 𝑀 then
11 choose Top-𝑀 videos with larger 𝑒𝑃𝑙𝑎𝑦𝑇 in 𝑟𝑒𝑡 ;
12 return 𝑟𝑒𝑡

Scenario 1: When 𝑥 < 𝑀 , NetRec picks several videos (𝑀 − 𝑥)
with the highest estimated playing time from the remaining videos
that are not picked by the Knapsack Algorithm to fill up to𝑀 videos.

Scenario 2:When 𝑥 = 𝑀 , NetRec has already obtained the
optimal combination of 𝑁 videos.

Scenario 3: When 𝑥 > 𝑀 , NetRec re-sorts the selected videos
and chooses the top𝑀 videos with the longest estimated playing
time.

3.4 Network Measurement
In order to provide accurate network information for re-ranking al-
gorithms to make better decisions, continuous measurement of real-
world network bandwidth is necessary. To minimize measurement
computation burden and traffic, we propose a passive monitoring
method that estimates bandwidth by tracking total transmitted
bytes and the time spent on transmission in a specific user request.
The result is recorded and utilized for future user requests. The
passive measurement approach offers two key advantages: firstly,
there is no need for additional measurement traffic or software, and
secondly, the resulting bandwidth estimate is an accurate reflection
of the achievable bandwidth of the link with the video provider.

3.5 Video Fetching and Feedback Collection
After applying the multi-objective re-ranking module, the top M
video IDs are sent to the client to retrieve the content from the
service providers or nearby content providers. We implement a
timeout mechanism at the beginning of each request, and any
video fetched beyond the deadline (e.g., 3 seconds) is not displayed
to the user. The real playing time of the displayed videos is
recorded as user feedback to evaluate the effectiveness of our model.
Notably, this feedback can also be utilized to train the video quality
estimation models.
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4 EVALUATION
In this section, we aim to answer the following research questions
through various testbed experiments.
• RQ1: Can NetRec improve the overall recommendation
revenue in different network conditions?
• RQ2: How does the bandwidth estimation algorithm affect
the overall performance?
• RQ3: How does the multiobjective re-ranking algorithm
affect the overall performance?
• RQ4: How does the accuracy of the content recommendation
algorithm affect the effectiveness of NetRec? Can NetRec
still be effective as the content recommendation algorithm
becomes increasingly accurate?

Dataset. To realistically evaluate the effectiveness of NetRec, we
use a publicly available dataset from Kuaishou [5], which records
the information of over 10K videos watched by millions of users
in one of the largest online video providers in China during two
months (from July 5, 2020 to September 5, 2020). For each video, the
dataset records its original time length (𝑣𝑖𝑑𝑒𝑜𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛), the time
watched by a user in each recommend (𝑝𝑙𝑎𝑦𝑖𝑛𝑔𝑇𝑖𝑚𝑒). The total
playing time (𝑝𝑙𝑎𝑦𝑖𝑛𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) and the total number of displays
(𝑠ℎ𝑜𝑤𝐶𝑛𝑡 ) during the measured period are provided. The estimated
playing time of a recommendation model can be approximated by
𝑝𝑙𝑎𝑦𝑖𝑛𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑠ℎ𝑜𝑤𝐶𝑛𝑡
.

Metric.We evaluate the total video playing time as the evalua-
tion metric, called the 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 . Specifically, 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 is calculated by
summing the playing time of all the videos that are recommended
and successfully transmitted to the user through the network,
during each evaluation round.

Schemes Compared.We compare NetRec with the traditional
mechanism that only considers the video content in recommen-
dation (we’ll refer to it as the baseline in the rest of the paper).
Traditional recommendation systems select 𝑁 videos as candidates
and recommend the top 𝑀 with the longest estimated playback
duration (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑃𝑙𝑎𝑦𝑖𝑛𝑔𝑇𝑖𝑚𝑒) without considering network
conditions. 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑃𝑙𝑎𝑦𝑖𝑛𝑔𝑇𝑖𝑚𝑒 is typically calculated by divid-
ing its 𝑝𝑙𝑎𝑦𝑖𝑛𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 by its 𝑠ℎ𝑜𝑤𝐶𝑛𝑡 .

Testbed Setup. Figure 3 displays the process of evaluation.
When the client requests the video from the server, it attaches the
network information and starts a timer. After the request arrives
at the server, the 𝑢𝑠𝑒𝑟𝐼𝐷 and network information are recorded.
The server selects the videos to be transmitted according to the
network information and the existing information of the video. In
our experiment, We count the playing time of the video received
before the timer expires. In our experiment, we used three servers
as the server-side and two regular computers as the client-side.
Because every user in the data set watches more than 2k videos,
we can get a fair evaluation even if we only choose one user. So
we randomly select users from the dataset for our evaluation, and
the selected user watches a total of 3234 videos in the dataset. We
select 12 videos as candidates for each request and for each round
we send 269 requests to measure the revenue under NetRec and
Baseline. All the results below are collected from more than 300
rounds of experiments conducted from Dec. 2022 to Mar. 2023.

Network Environments. The experiments are done under three
network environments. 1) Lab LAN: Both the server and the client
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Figure 3: Testbed Setup.

are deployed in a small laboratory network, and they are directly
connected through 1 Gbps cables and several switches. 2) Campus
Network: The server and client locates in a college campus network
that has about 40K users. The network contains about 10K wired
and wireless switches and routers. The server accesses the campus
network through a 1 Gbps cable, and the client accesses the campus
network through a WiFi 5 wireless router. 3) Internet: The server
and the client locates in Nanjing and Changsha, respectively, which
are two cities in different provinces in China. They communicate
with each other through the network offered by ISPs in China. The
server uses wired cables as the access link, and the client is accessed
through home wireless routers.

4.1 RQ1: Overall Performance
Figure 4(a) shows the revenue improvement under various network
environments, compared with traditional recommendation systems,
as the actual network bandwidth between the server and the client
varies. NetRec improves the revenue by 109.29%-12357.31%, 13.26%-
1545.86% and 0.18%-72.82% when the network bandwidth is 0-2
MBps, 2-10 MBps and 10-150 MBps, respectively. Generally, it
improves the revenue more when the network bandwidth is small
and improves less when it grows higher. This is because when there
is enough network bandwidth, the recommended videos will have
greater chances to be transmitted successfully, even if the network
condition has not been considered during the recommendation.
However, when the network is slow, it needs to carefully consider
the transmission condition when recommending videos, otherwise,
the videosmay not be received by the client due to the network limit.
We output the improvement of the successful transmission rate of
our algorithm relative to the baseline, as shown in Figure 4(b). It can
be seen that regardless of the network environment and bandwidth,
our algorithm can effectively reduce the timeout ratio. A lower
timeout ratio means that our NetRec can ensure that more videos
are successfully presented to users. This also explains why our
algorithm can generate higher revenue compared to the baseline.

Note that even though the measured network bandwidths are
similar, the improvement degree may be different under different
network environments, due to the bandwidth fluctuations in actual
networks.
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conditions.

To demonstrate that the revenue improvement of NetRec is not
due to the selection of a user dataset that is more advantageous
to us, we also randomly selected another two users who watched
more than 2K videos during the statistical period. As shown in
Figure 4(c), NetRec is still to achieve good revenue despite using
different users’ datasets, with about 80% revenue improvement in
mean for different rounds of evaluation.

4.2 RQ2: Bandwidth Estimation
Given a specific network bandwidth, we can accurately predict
whether the Top-M videos selected by NetRec can be successfully
transmitted. Therefore, to comprehensively evaluate the impact
of the bandwidth estimation algorithm on the entire system, we
analyzed the revenue under a range of network bandwidths when
the estimation error of the algorithm was within ±10%. The
experimental results are shown in Figure 5. As shown in the
figure, when the bandwidth environment is better, such as 5MBps,
the tolerance of NetRec to the bandwidth estimation method is
high. Even when the bandwidth estimation error reaches 10%, the
decrease in the performance is within 2%. However, as the network
corrupts, the revenue of NetRec is more sensitive to the accuracy
of the bandwidth estimation algorithm. It can be seen that when
the bandwidth is 1MBps, a 10% estimation error will result in an up

to 15% decrease in revenue. We also observed that overestimation
errors are more likely to affect the revenue than underestimation.
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Figure 6: Comparison of different re-ranking algorithmswith
different video quality estimation method (EstimatedPlay-
ingTime or RealPlayingTime).

Implications: Further improving the accuracy of bandwidth es-
timation is valuable, which may bring ∼5% higher recommendation
revenue if the bandwidth estimation error is reduced from 10% to
5%.

4.3 RQ3: Multi-objective Re-ranking
The multi-objective re-ranking algorithm is the core part of
our NetRec system. In addition to the knapsack algorithm used
by NetRec, we propose two greedy algorithms for comparison.
The first algorithm (Greedy1) sorts videos greedily according
to 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑃𝑙𝑎𝑦𝑖𝑛𝑔𝑇𝑖𝑚𝑒

𝑡𝑥𝑇𝑖𝑚𝑒
, while the second one (Greedy2) only

considers txTime, ignoring video quality. From Figure 6 (a), we
observe that Greedy2 achieves better results than Greedy1, and
Greedy1 performs similarly to our knapsack algorithm. We guess
that this is because the estimatedPlayingTime used by the re-ranking
algorithm for selecting M video is inaccurate. The inaccurate input
limits the ability of the re-ranking algorithm to select better videos.

To verify our hypothesis, we replace estimatedPlayingTime with
realPlayingTime in NetRec and baseline. Under this scenario, all
the re-ranking algorithms can accurately estimate the playing time
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when the video is delivered to end-users. As shown in Figure 6 (b),
the performance of Greedy2 is worse than the baseline algorithm
as it does not consider the video quality. The knapsack algorithm
performs better than Greedy1 indicating a better trade-off ability
between video quality and transmission time.

Implications:As the improvement of the accuracy of estimating
video play time in the recommendation models, it brings more
benefits to optimize the multi-objective re-ranking algorithm.

4.4 RQ4: Ideal Quality Estimation?
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Figure 7: The revenue improvement of NetRec in different
bandwidth range inCampusNetwork, when the video quality
estimation achieves 100%.

We conducted a real-world experiment in which the accuracy of
video quality estimation reached 100%. To achieve 100% accuracy,
we use the posterior playing time to replace the estimatedPlay-
ingTime. The result is shown in Figure 7, which indicates the
lower-bound of improvements for NetRec. This is because the more
accurate of the video quality estimation algorithm, the stronger
the baseline algorithm becomes. In a real-world environment,
our NetRec achieves higher improvements (shown in Figure 4(a))
because the accuracy of video quality estimation is far lower than
100%.

Implications: Even if the recommendation model achieves ideal
100% accuracy for video quality estimation, jointly considering
network status can also bring 3% to 12% revenue improvement.

5 CONCLUSION
In this paper, we propose a novel short video recommendation
mechanism that incorporates network bandwidth into the video rec-
ommendation system. The mechanism uses a knapsack algorithm
to select the video combination that can be successfully transmitted
within the specified time and brings the highest real revenue. In
situations with poor network bandwidth, the mechanism can bring
about 160% improvement compared to traditional recommendation
mechanisms. At the same time, this paper also points out that in a
network environment with poor bandwidth, the loss of revenue will
gradually increase as the bandwidth measurement error increases.

We will focus on the network measurement part, to reduce
the revenue loss caused by network measurement errors in our
recommendation mechanism for future work.
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