
Primus: Fast and Robust Centralized Routing for
Large-scale Data Center Networks

Guihua Zhou1, Guo Chen1∗, Fusheng Lin1, Tingting Xu1, Dehui Wei1, Jianbing Wu1,
Li Chen3, Yuanwei Lu2, Andrew Qu2, Hua Shao4, Hongbo Jiang1

1Hunan University, 2Tencent, 3Huawei, 4Tsinghua University

Abstract—This paper presents a fast and robust centralized
data center network (DCN) routing solution called Primus. For
fast routing calculation, Primus uses centralized controller to
collect/disseminates the network’s link-states (LS), and offload
the actual routing calculation onto each switch. Observing that
the routing changes can be classified into a few fixed patterns in
DCNs which have regular topologies, we simplify each switch’s
routing calculation into a table-lookup manner, i.e., comparing
LS changes with pre-installed base topology and updating rout-
ing paths according to predefined rules. As such, the routing
calculation time at each switch only needs 10s of us even in a
large network topology containing 10K+ switches. For efficient
controller fault-tolerance, Primus purposely uses reporter switch
to ensure the LS updates successfully delivered to all affected
switches. As such, Primus can use multiple stateless controllers
and little redundant traffic to tolerate failures, which incurs little
overhead under normal case, and keeps 10s of ms fast routing
reaction time even under complex data-/control-plane failures.
We design, implement and evaluate Primus with extensive ex-
periments on Linux-machine controllers and white-box switches.
Primus provides ∼1200x and ∼100x shorter convergence time
than current distributed protocol BGP and the state-of-the-art
centralized routing solution, respectively.

I. INTRODUCTION

A. Current Distributed Routing

BGP [1] is the current de facto data center network (DCN)
routing protocol [2], [3]. However, such distributed routing
protocol has two well-known open issues [4], [5], which now
become increasingly problematic as the DCN scales larger.
First, the routing convergence procedure is slow. As large
number of switches independently react to network changes
without a centralized coordination, it may incur excessively
unnecessary routing communication and calculation, which
can cause long routing connectivity loss although physical
network remains connected [6]–[8]. Second, it is hard to
control and manage the whole network’s routing with thou-
sands of switches making decisions independently, e.g., BGP
configurations in large-scale DCNs can be daunting [9].

B. The Rise of Centralized Routing and Remaining Problems

At least from [10], [11], the community has started to think
of using centralized way to address above intrinsic problems
in the distributed routing protocols. Ethane [12] may be the
first successful application of centralized control on a medium-
scale campus network. However, before Google published

∗Corresponding author.

Firepath (i.e., its DCN routing system) in 2015 [9], people
are still unsure about whether the centralized way can handle
the whole network’s routing for large DCNs, which contain
more than thousands of routing nodes (i.e., L3 switches) and
require stringently high networking performance.

Firepath [9] is (possibly) the first and only published work
that has successfully designed/implemented/operated a full
routing protocol and system using centralized control for
DCNs (other works are not a full routing protocol. See §II
for details). Centralized architecture does help Firepath greatly
accelerate routing convergence, by eliminating broadcasting
communication between switches and reducing the routing in-
consistency caused by independent calculation on each switch.
Moreover, it significantly simplifies the routing control and
management. Nonetheless, there remain two major challenges
not well addressed in Firepath, which limit the performance of
its centralized routing when DCN scales larger. Specifically:

• How to calculate the routing fast enough? Apparently,
using a centralized controller to directly calculate the
whole network’s routing will be slow and not scalable.
Therefore, the centralized controller in Firepath is only
used to collect and store the whole network’s link-
state database (LSDB), and disseminates link-state (LS)
changes to the switches. Each switch then distributedly
calculates its routing paths using shortest-path first (SPF)
algorithms. On the downside, we emphasize that it is still
very time-consuming to calculate shortest paths on each
switch, since performing SPF algorithms on the whole
large DCN topology is required. In a topology with n
nodes, m edges and k equal-cost shortest paths, a typical
k-SPF algorithm has a very high time complexity of
O(kn(m+nlogn) [13]1. Our experiments show that for a
DCN topology with 10K switches (Fig. 1), it takes more
than 3 seconds for a switch to calculate the shortest paths
upon one LS change. This may be the reason why a single
link failure causes 4s time of routing connectivity loss to
a rack of servers in Firepath (Table 4 in [9]).

• How to gracefully handle control-plane failure? In
case of controller failure, Firepath runs multiple backup
controllers, each maintaining an LSDB of the whole

1We note that there exist some optimizations to the k-SPF algorithm (e.g.,
[14], [15]). However, their calculation time still grows fast as the topology
scales larger, which is undesired for scalability.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

978-1-6654-0325-2/21/$31.00 ©2021 IEEE

IE
EE

 IN
FO

C
O

M
 2

02
1

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-0
32

5-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
42

98
1.

20
21

.9
48

86
89

network. To avoid routing inconsistency, all controllers
always keep their LSDBs synced. However, this delays
the routing reaction. For example, if using consensus
protocols (e.g., [16]) to keep LSDBs consistent among
multiple backups, when the controller processes an LS, it
will incur extra overhead such as logging and replicating
states between multiple backups. Moreover, as DCN
scales larger, failures would also be norm in the control-
plane network, since there are large number of control-
plane switches/links. Therefore LS updates reported to
the controller may be lost due to control-plane network
failures. Then, the reporting switch either has to wait
for some retransmission timeout (e.g., upon temporary
failures) or wait for a controller reelection procedure (e.g.,
when controller’s access link permanently down), both
incurring significant delay.

C. Our Contributions

To tame above challenges, we propose Primus, a fast and
robust centralized intra-DCN2 routing protocol and system.
Primus takes philosophies totally different from Firepath for
routing calculation and control-plane failure handling:

• Primus simplifies the routing calculation into a table-
lookup manner, which is fast and scalable. In Primus, we
follow the architecture of [9], using a centralized master3

to monitor all the link-states and each switch calculates
routes by itself. However, each switch does not really
“calculate” the routes. Observing that DCNs have regular
topologies and the routing changes can be classified into
a few fixed patterns, we let each switch simply compare
the current link-states with the preinstalled base topology,
and disable or enable the routing entries in its prein-
stalled base routing table according to predefined rules.
According to the routing change patterns, we develop a
smart indexing technique which provides O(1) routing-
path table lookup time for an LS change4. The whole
routing updating time at a switch for an LS change
only takes 10s of µs even in a large network topology
containing 10K+ switches. Moreover, we devise novel
data structures so the memory footprint at each switch is
only <10MB for such large network. (§III-B)

• Primus uses multiple stateless masters and lit-
tle redundant traffic to tolerate control-plane fail-
ures, which incurs low overhead in normal, mean-
while achieves fast routing reaction even under complex
control-plane failures. Particularly, we adopt multiple hot-
standby backup masters as in [9] to tolerate master failure.
However, the reporter switch is logically responsible
for the success of delivering LS changes to the whole
network (but still physically through the master). As
such, masters can be stateless without remembering the
whole network’s link-states. Therefore, handling master

2We still assume the use of BGP for external routing. Details in §III-D.
3“Master” and “controller” are exchangeably used in this paper.
4Note that the table update time is not O(1) since it depends on the number

of routing-path entries which are affected by the LS change.

failure is easy and low-cost because any backup master
can process an LS change and there is no need to wait
for synchronization between multiple masters5. More-
over, to keep fast reaction upon failures, Primus adds
some redundancies whenever passing LS messages. Those
redundant LS messages are often on different failure
domains (e.g., processed by different backup masters and
control-plane network devices), and the routing can be
correctly performed if at least one LS message copy has
been successfully processed. As such, Primus can keep
fast routing convergence (10s of ms for network with
10K+ switches), even under control-plane network failure
and master failure. (§III-C)

We have an open-sourced implementation of Primus (avail-
able at [17]). Our Primus master implementation runs on Linux
machines, and Primus switch implementation can run both
on Ruijie white-box switches [18] and Linux-based software
switches. Our testbed evaluation shows that for a large network
containing 10K+ switches, upon an LS change, Primus can
finish the routing updates of the whole network within 33ms,
which is ∼98.8x faster than Firepath. Based on fast and
robust routing, applications using Primus has three orders
of magnitude better 99th and 99.5th percentile performance
compared to those using BGP, and ∼100x better compared
to Firepath, respectively. We believe that Primus has set a
new performance milestone for building centralized routing
for large scale DCNs.

II. RELATED WORK

Other centralized routing control: Besides Firepath, there
are also previous works (e.g., [2], [19]–[26]) using centralized
control to address part of the routing problems in DCN. How-
ever, they are not complete routing protocols. For example,
[21]–[23] use centralized controller to help scheduling network
flows on certain paths, thus to minimize flow completion time
or balance the network utilization. However, they still rely
on underlying routing protocols to maintain and calculate the
routing paths (e.g., [22] is implemented on top of BGP). [19]
takes the same idea of using centralized controller to collec-
t/disseminate link-states. However, it aims to build a layer 2
routing based on MAC address, which does not match the
layer 3 IP routing architecture in modern data center physical
networks. Moreover, [19] did not address problems discussed
in §I-B. [2], [20] utilize centralized control to translate between
physical and virtual addresses for network virtualization. [24]–
[26] build underlying system (e.g., switch softwares and dis-
tributed systems) to provide centralized abstraction for data
center networks. However, they do not build routing protocols
and algorithms on top of the system.
Improved distributed routing protocol: Many works,
e.g., [27]–[29], try to improve BGP using various techniques.
Although big improvements have been achieved, the intrinsic

5For centralized control/management demands, masters can later slowly
synchronize the latest complete LS changes with each other after the routing
has been updated. See §III-C and §III-E for details.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

drawbacks in distributed routing still remain to be open ques-
tions (e.g., convergence still requires seconds to minutes) [4],
[28]. RIFT [30] utilizes the preknowledge of the DCN fat tree
topology to simplify the routing and limit the broadcasting
area. However, staying as a distributed protocol, RIFT still
has intrinsically poor routing controllability (making decisions
distributedly) and slow convergence time (link-state broadcast,
calculation and waiting timers). Since RIFT is still an RFC
draft (working in progress) lacking implementation details, we
are not able to compare with it in our testbed.
Data-plane connectivity recovery: There are many works
(e.g., [6]–[8], [31]–[37]) aiming to provide fast data-plane
connectivity recovery before routing convergence. Fast rerout-
ing (FRR) techniques (e.g., [31]–[33]) focus on the Internet
scenarios. However, in DCN with dense fat tree topology,
for downward routing paths, it does not satisfy the loop-free
requirements of these FRR techniques and still require control-
plane convergence (single next-hop)6, so typically they are
not applied in DCNs [3]. Several works [6]–[8], [35] focus
on fast data-plane recovery in DCN. However, they either
require significant changes to physical topology [6], [35], or
may incur temporary routing loops or use non-shortest bounce-
back paths [7], [8], neither are desired in DCN. Moreover,
these works are complementary to Primus. Primus can lever-
age those data-plane techniques to further accelerate routing
recovery before control-plane routing convergence.
Centralized routing in WAN: Previous works build central-
ized routing system for traffic engineering in inter-DCN wide-
area networks (WANs) (e.g., [38]–[40]), which is different
from intra-DCN environment.

III. PRIMUS DESIGN

3.2 3.3 3.4 3.5 3.63.1 3.9 3.10 3.11 3.123.7 3.13 3.14 3.15 3.16

…
1.2

2.1 2.3 2.4

… 1.99 1.100

Pod 1
1.2 1.100001.9901 1.9902

2.397 2.398 2.399 2.4002.397

1.99991.9801 1.9802

2.395 2.3962.393

1.9899 1.9900

2.3942.2

3.8

1.1

Lead Backup Backup

…
…

Masters

… …

Pod 100Pod 99

Control-plane
network

Fig. 1. Primus over an example DCN.

A. Architecture

In Primus, we follow the architecture of [9], using a central-
ized master to collect/disseminate all the LSes. Each switch
simply compares the current link-states with the preinstalled
base topology, and disables or enables the routing entries
in its preinstalled base routing table according to predefined
rules. This table-lookup manner greatly simplifies the routing
calculation. Moreover, it maintains the centralized routing
manageability/controllability through monitoring global LSes.

Master communicates with each switch through an out-of-
band control-plane network as shown in Fig. 1. Each switch
monitors its local data-plane links (using standard failure
detection scheme such as [41]) and reports to the master upon
a local LS change. After receiving an LS, the master delivers
updates to all the switches whose routing may be affected.

6For upward routing paths, there are multiple equal-cost next-hops so it
simply uses ECMP fast data-plane rerouting instead of those FRR techniques.

Possibly affected switches are fixed in a certain DCN topology,
so the master uses predefined rules to quickly find them 7.

Each switch is preconfigured with the static address of the
master, and setups a long-lived bidirectional reliable transport
connection (e.g., TCP) to the master through control-plane
network for passing LS messages (called main channel). As
Fig. 2(a) shows, upon detecting a local LS change, a switch
will report it to the master through the main channel (dashed
red arrow-line). Each LS change has a uniquely ascending
ID per link. Whenever receiving a new LS, the master will
deliver the LS to all the possibly affected switches through
their main channels (dashed yellow arrow-line). A switch will
reply an acknowledgment to the master over main channel
after successfully receiving the LS and updating its routing
(dashed black arrow-line). The master will reply a response
to the reporting switch over the main channel (dashed green
arrow-line), when it successfully delivers the LS to all the
affected switches and receives their acknowledgments. If not
receiving the master’s response, the reporting switch will keep
retransmitting the LS (after certain timeout) until succeed or
the master changes (in case of master reelection). Note that the
timeout can be relatively long since we have fast fault-tolerant
schemes (§III-C).

…

Lead Master

…
Control-plane

network

Switches …

Lead Masters

…
Control-plane

network

Switches

Backup Backup…

Reporter
switch

Affected
switch

…

LS delivery ACK

LS deliveryLS report

LS report done

Through control-plane network Through data-plane network
LS report

LS delivery
Forwarding
switch

(a) Normal LS message passing
through main channels

(b) LS message copies passing
through other channels for fault-tolerance

Fig. 2. Primus’s fault-tolerant link-state updating scheme.

Next, we introduce in details how Primus’s design achieves
1) quick routing calculation (§III-B), and 2) efficient fault-
tolerance (§III-C), respectively.

B. Routing Calculation

For ease of presentation, in the rest of paper, we assume
that the DCN uses the most popular three-layer fat tree
topology [2], [9], [19], [42]. The topology contains three
layers of switches, i.e., Core, Aggregation (Agg) and Top-of-
Rack (ToR) switches, respectively. k ToR switches and s Agg
switches form a pod with each ToR connected to each Agg. We
denote the number of pods as p. Each Agg switch in a pod is
connected to n different Core switches, and each Core switch
is connected to every pod. The total number of Core, Agg, and
ToR switches is s × n, s × p and k × p, respectively. Figure
1 shows an example topology with k = 100, s = 4, p = 100
and n = 4, which is used for production DCNs in Tencent.

7Upward link affects all switches in the subtree below it, e.g., in Fig. 1
link 2.1→3.1 possibly affects routing in switch 2.1 and 1.1-1.100. Similarly,
downward link affects all upper layer switches connected to it (with one or
two hops) and the subtree below those switches, e.g., in Fig. 1 link 2.1→1.1
possibly affects switch 2.1, 3.1-3.4, the leftmost Agg switch in each pod, and
all ToR switches except 1.1.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Note that Primus also works for fat tree with more layers, and
can be easily adapted to other topologies (see §III-E).

TABLE I
SNAPSHOT OF PATH TABLE OF

SWITCH 1.1 IN FIG. 1.
No. Next Dest FL
... ... → ... →

39201 →2.1→3.1→2.393 1.9801 1
39202 →2.1→3.2→2.393 1.9801 1

... ... → ... →
39204 →2.1→3.4→2.393 1.9801 1
39205 →2.1→3.1→2.393 1.9802 1

... ... → ... →
39208 →2.1→3.4→2.393 1.9802 1

... ... → ... →
39601 →2.1→3.1→2.397 1.9901 1

... ... → ... →
39604 →2.1→3.4→2.397 1.9901 1
39605 →2.1→3.1→2.397 1.9902 1

... ... → ... →
79201 →2.2→3.1→2.393 1.9801 0

... ... → ... →

TABLE II
SNAPSHOT OF LINK TABLE OF

SWITCH 1.1 IN FIG. 1.
From To State Type: First Entry

1.1 2.1 Fail 1: 1

1.1 2.2 OK 1: 40001

... ... OK ...

2.1 3.1 OK 2: 401

... ... OK ...

3.1 2.397 OK 3: 39601

... ... OK ...

2.397 1.9901 OK 4: 39601

... ... OK ...

Each switch maintains two table data structures for routing
calculation8.
Path table: It includes all the equal-cost shortest paths to
every destination in the topology and lists all the links along
that path9. We do not merge paths (e.g., with the same next-
hop) in the path table for ease of routing calculation (detailed
reasons in §III-E). The path table also records the number
of failed links (denoted as FL) in each path. Once receiving a
link-state update from the master, the switch first finds the path
entries that contain that link (discuss how to find them later),
then increases (for link failure) or decreases (for link recovery)
FL of those path entries by one. The switch can detect if a
path can be used for routing in O(1) time by checking whether
its FL equals zero.

For the topology shown in Fig. 1, there are ∼160K paths
in the path table, which will only take about 7.7M bytes in
each switch (experiments latter in §V-A). Note that this table
is an internal data structure used by Primus routing calculation
algorithm, and the actual routing/forwarding table in the switch
data plane can be much smaller because the paths with the
same first next-hop and the same destination can be merged
into one route. Each switch can distributedly merge its routes
and check whether the merged route is working by detecting
if there is at least one path working (i.e., FL=0) within that
route. It is also simple to make this merging and checking
process very fast, e.g., using bitwise AND on the FLs of all
paths. Table I shows a snapshot of switch 1.1’s path table,
assuming the link from switch 1.1 to 2.1 fails (the affected
entries’ FL increased by 1).
Link table: It records the current state of all the links in the
base topology. Apparently, once a link-state changes, it would
cost too much for a brute-force search in the path table to find
which entries will be affected. As such, we precalculate all
the affected paths for each link, and maintain a data structure

8We only discuss routing to the servers for ease of presentation. Routing
to switches is similar and can be easily drawn from the following design.

9Access links from servers to ToRs are not listed in the paths, since those
links are only used in L2 switching but not in L3 routing.

in each link table entry to smartly index all the path entries in
the path table affected by this link, in O(1) time complexity.

An intuitive data structure for maintaining such index would
be a bitmap, with each bit indicating whether a path contains
this link. However, such simple bitmap would consume too
much memory since there are k× s×n entires in total in the
path table. For example, in Fig. 1, such bitmap needs 160Kb
memory to index all the path entires and each of the 40K
links needs one such bitmap, which costs ∼6.6Gb in total.
Such memory consumption would be prohibitive as the scale
grows larger.

Luckily, in DCN topology there are only several fixed
patterns of how a link-state change will affect the routing
paths. Therefore, it is not necessary to use a bitmap that can
represent any combination of all the routing paths. Specifically,
from a switch’s point of view, links in the fat tree topology
can be classified as four types:

• Type 1. For upward link from ToR to Agg, it will affect
n×k×p path entries in total, i.e., all the n paths stemmed
from this Agg to all the k × p destinations.

• Type 2. For upward link from Agg to Core, it will affect
k×(p−1) path entries in total, i.e., the single path through
this link to all the k × (p − 1) destinations in all other
pods.

• Type 3. For downward link from Core to Agg, it will
affect k path entries in total, i.e., the single path through
this link to all the k destinations in this pod.

• Type 4. For downward link from Agg to ToR, it will affect
n path entries in total, i.e., the n paths through this Agg
to the single destination of the ToR.

As such, we can use a compact data structure which only needs
to indicate the type and the first path affected by this link, and
we can quickly index all the affected path entries according
to the above patterns. Such data structure only requires 2 bits
(for type) plus log(k × s × n) bits for the index of the first
affected entry. For the example topology shown in Fig. 1, the
link table in our implementation only consumes about 1.3MB
memory in total (experiments in §V-A).

Table II shows a snapshot of switch 1.1’s link table in Fig. 1.
The last column is the index of the affected path entries. If
we organize the entries in the path table in the order shown
in Table I (i.e., in the order by the first hop, then by the
destination, then by the second hop), Type 1: 1 indicates that
link 1.1→2.1 affects the continuous 40000 (4 × 100 × 100)
entries starting from entry 1; Type 2: 401 indicates that link
2.1→3.1 affects in total 9900 (100×99) entries, which includes
the first of every 4 entries starting from entry 401.

C. Handling Control-Plane Failure

The reliable LS report scheme described in §III-A ensures
the network have an eventual consistent view to the latest LS
change, without relying on states maintained on the master
or other parts of the network. As such, we can easily use
control-plane redundancy (backup masters and redundant LS
messages) to tolerate failures. Specifically, Primus takes the
following fault-tolerant schemes.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Slight redundancy for speed: We use multiple backup
masters. As Fig. 2 shows, there is one lead master, which
is active to collect/disseminate all LS messages from main
channels, and multiple backup masters, which work as hot
standbys and process redundant LS messages. Each switch is
preconfigured with the static address of each backup master.10

For a switch, whenever detecting a local LS change in the
data-plane, besides reporting the LS through its main channel,
it also sends multiple copies of the LS to backup masters
through other reachable switches using normal data-plane
network (solid red arrow-line in Fig. 2(b)). Those switches
will immediately forward those copies to the backup masters
through their own control-plane links (dashed red arrow-line
in Fig. 2(b)). Similarly, backup masters will send such copies
to some other switches (which will forward) to deliver LS
updates to a target switch (yellow arrow-line in Fig. 2(b)).

Above LS copies (called redundancies) are transfered using
low-overhead unreliable transport (e.g., UDP) through ran-
domly picked (and different) forwarding switches and backup
masters, and are never ACKed or retransmitted. This forms
multiple other channels between the master and switches.
Target switches will process the first arrived LS message
among all the copies (including the origin) and neglect others
(based on the message ID). Note that a switch always responds
an ACK to the lead master through the main channel when
it has processed this LS for the first time (no matter from
main channel or other channels), thus the lead master can
quickly notify the reporting switch when the whole network
has finished the routing updates. Based on above redundancy
schemes, the routing reaction in Primus still keeps fast even
under complex control-plane or master failures, as long as at
least one main/other channel is working.
Slow detection and synchronization with low-overhead:
We detect the main channel status through periodical hellos.
With aforementioned fault-tolerant scheme, this hello can be
very slow (e.g., minute-level TCP keep-alive) without delaying
routing reaction upon control-plane failures. Once the main
channel is detected as dead, we will setup indirect channels to
work as the new main channel to pass control-plane messages.
For a switch, if it detects the failure of its main channel, it
notifies several other switches (possibly) reachable in data-
plane (according to its local routing table) and picks the first
responding one to establish an indirect reliable data-plane
communication channel through it to the master, working as
the new main channel. Similarly, indirect main channel will
be setup when the master detects the failure of certain target
switch’s main channel.

We run a consensus protocol (e.g., Raft [16]) among all
masters (including the lead and the backups). Note that the
consensus protocol does not affect normal LS processing, but
only runs in the background to detect master failure, and

10Each switch also maintains a backup main channel (reliable) between
each backup master. Different from the main channel, those backup main
channels are only lazily monitored through slow hello, being prepared for the
possible master reelection, but never used to pass LS messages until a backup
becomes the lead.

reelect lead master. Once a new lead is elected after the
original one fails, it will notify all the switches. For centralized
manageability and controllability, to maintain global network
states in case of master failure, the consensus protocol also
slowly exchanges latest global link-states between the lead
and backup masters in the background (just best effort but
not mandatory for routing correctness, discussed in §III-E).
Note that the consensus protocol is decoupled with normal
routing reaction upon LS changes, so it can run in a very low
frequency, incurring low overhead.

D. Other Design Details

Controlling routing flaps. Primus adopts per-local-link timer
in each switch to monitor each switch’s local LS changes.
The timer does not apply to the first state change of each link,
but throttles updating subsequent continuous changes11 to the
master. As such, Primus reacts fast on normal LS changes
while having routing flaps well controlled. In case of buggy
switches, master can also throttle disseminating continuously
changing LSes by monitoring LSes itself. Note that such timer
incurs very small overhead, which can be easily implemented
by adding a timestamp for each local link in the link table,
indicating the time of its last state change.
Routing initialization/reboot. We preconfigure the base DCN
topology, the expected position in the topology, and all the
masters’ static addresses to each switch12. Based on the
configuration, switches can generate their base link and path
table. When a switch initializes or reboots from crash, it
will build main channel with all masters, reporting its base
information, and finding out the current lead master (also
masters can discover topology wiring error from the position
information reported by switches). Meanwhile, it finds out
the highest LS event ID of all its local links from all the
masters, and then checks all local links’ states and reports all
current states using highest LS event ID++, to ensure that the
whole network view its latest link-states. Similarly, masters
are also preconfigured with the base DCN topology and all
other masters’ static addresses. When a master initializes or
reboots from crash, it first finds out (or reelect) the lead, and
starts listening/processing switches’ LS messages.
Multi-link failures and switch failures. Failures of multiple
links are processed as multiple independent LS events, using
the same methods described before. A switch is detected as
dead if all masters cannot reach it (even with redundancy
schemes). Then the master takes it as all its data-plane links are
down and notifies other switches to update routes accordingly.
Interacting with external routes. Primus still uses BGP
to interact with external Internet routers. Specifically, border
switches in DCN (e.g., Core switches) both run Primus and
BGP routing instances, but only enable BGP on outside ports.
Border switches will disseminate BGP routes learned from
outside to each internal switch, notifying which address they

11A subsequent link-state change which happens after the timer length is
considered as the first state change again for this link.

12If the base topology changes, e.g., due to scale upgrade, we will
reconfigure each switch.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

can reach. As such, when having traffic going outside, a switch
can route the traffic first to the border using the intra-DCN
routes calculated by Primus, and then to the outside.
Routing in control-plane. Since the control-plane network
is relatively small compared to the data-plane and our redun-
dancy scheme helps to handle control-plane failures fast in
low-cost, we simply use existing distributed protocols (e.g.,
OSPF [43]) for routing in the control-plane network.
Centralized routing controllability/manageability. Bene-
fited from the table data structures listing all the routing
paths, it is natural and easy to control/manage each switchs
routing by manipulating its path entries (e.g., customizing path
weights). Also, it is convenient to visualize network failures
according to collected global LSes, and easy to find wiring
error based on location ID reported by each switch. We have
built several centralized control/management applications in
our testbed (details omitted due to space limitation).

E. Discussions and Limitations

Master state loss. Since we use stateless master to achieve
fast routing reaction upon complex failures, it may loose
global LSes (although not likely). This may temporarily affect
above centralized control/management functionalities (but not
routing correctness). However, master will eventually get the
correct latest states and restore these functionalities, after
running correctly for a while. These control/management
functionalities are relatively less time sensitive, so we choose
to decouple them with normal network routing reaction to
reduce overhead. It is our future work to make such advanced
functionalities react fast to network changes similarly as
normal routing processing, which is out of this paper’s scope.
Routing correctness. We preinstall all the shortest paths into
switches, and only disable/enable preinstalled paths upon LS
changes. As such, Primus will only use those (correct) shortest
paths, without worrying about routing loops. Routing may
be unreachable when physically only non-shortest paths exist
(e.g., bounce back to upper-layer switches), but DCNs already
have plenty of shortest paths to tolerate network failures. Since
there is only one generator, i.e., reporter switch, for a certain
LS (masters and other switches are only for forwarding),
routing is eventually consistent in the whole network.
Why not use merged routes? Once a link’s state changes,
a switch cannot know whether a route entry is still working
or not if only using a merged route instead of monitoring the
status of all the links along that route. For example in Fig. 1,
if upward link 2.1→3.1 fails, switch 1.1 has no idea about
whether its next-hop 2.1 is still valid or not, since 2.1’s other
three upward links (to 3.2/3.3/3.4) may have already failed.
As such, it may require master calculation based on history
states, hurting performance and bringing consistency issue.
Why not centralized table-lookup? As introduced in §III-B,
each switch needs a link table and a path table for updating
routes. These two tables are different for each switch which are
calculated based on location. As such, putting all the tables
in the master will consume too much memory. Taking the
topology in Fig. 1 as an example, the total memory cost of all

the tables in all the switches is more than 30GB. Moreover, if
routing calculation is done at the master, it raises performance
and consistency issues in case of control-plane failure.
Traffic incast/outcast to/from the master? There are two
conditions possibly generating incast [44] traffic to the master,
but neither of them will cause performance issue: 1) Multiple
switches simultaneously report local LS changes to the master.
However, the number of concurrent LS changes is typically
very small (e.g., hundreds per day [45]), which incurs very
low volume of traffic for LS reporting. 2) Multiple switches
simultaneously reply acknowledgments to the master when
receiving LSes. However, taking the large topology in Fig. 1
as an example, even if all the switches send acknowledgments
simultaneously, the whole traffic volume is less than 700KB
(64B per acknowledgment), which is far below modern DCN
switches’ buffer capacity (e.g., 9MB for Broadcom Trident-
II chip [46]) and unlikely causes packet drops. Moreover,
switches can add some random delay before sending ac-
knowledgments, and such designed delay is only for the
acknowledgment which does not increase the routing reaction
time. For outcast traffic, masters do need to send a lot of LSes
to a bunch of affected switches. However, this does not take
much time, which can be done within 10s of ms even for ten
thousands of switches (experiments in §V-B).
Primus for other topologies. Since the basic idea of table-
lookup routing calculation is based on fixed routing change
patterns in preknown topology, it is easy to adapt Primus to fat-
tree with more layers and other topologies (e.g., cube topolo-
gies [47]), because we also can extract predefined routing
change rules. Details on these topologies are beyond the scope
of this paper. Primus’s table-lookup routing calculation may
not be applicable to DCNs using random topology without
regularities (e.g., [48]).

IV. IMPLEMENTATION AND TESTBED SETUP

A. Primus Implementation

We have a complete implementation of Primus with 3128
lines of C++ code (available at [17]), based on Linux-machine
masters/switches and Ruijie white-box switches [18] with
SONiC [49] switch OS installed13. Primus works as a daemon
process on each switch and master. The switch implementa-
tion mainly consists of three components, i.e., link monitor,
link-state updater/receiver, and routing calculator/updater.
Link monitor monitors a switch’s NIC (switch ports) status
through Linux epoll events14. Link-state updater/receiver
reports/receives/forwards LSes and other control messages
through long-lived-TCP-based main channel and UDP-based
redundancies. Each LS is formatted into a 52B data structure.
Routing calculator/updater uses the table structures described
before to calculate routing, and updates the Linux kernel
routing table through rtnetlink. Master communicates
with multiple switches through multiple TCP threads based

13From the OS user’s point of view, SONiC is almost the same as Linux
except for some switch-specific network configurations. Our code can run
both on Linux and SONiC.

14Linux can get those events from underlying detection schemes (e.g., [41]).

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

on epoll event loop. The election protocol between masters
is based on an existing implementation of Raft [50]. Although
we have not used high-performance networking stacks (e.g.,
DPDK [51]) for now, the current Primus implementation offers
performance good enough even for a very large network
(results in §V). Integrating Primus implementation with high-
performance networking stacks will be our future work.

B. Testbed Setup and Methods Compared

We build a prototype testbed consisting of 11 Linux-virtual-
machine based switches (Ubuntu 16.04.4, kernel 4.12) and
3 B6510-48VS8CQ Ruijie switches (SONiC.201803.release.0,
Kernel 3.16.0-5). The prototype data-plane topology is shown
in the black and bold part of Fig. 1 (switch 1.1/2.1/2.2 are
physical Ruijie switches). Note that we cannot virtualize these
physical switches into more logical ones because currently
SONiC does not support VRF (Virtual Routing and For-
warding) [52]. All the VM switches are connected through
virtual switches with 1Gbps links, hosted in 4 Dell R720XD
physical servers (Intel Xeon CPU E5-2620, 96GB memory).
Ruijie switches are connected through 1Gbps link between
each other and between physical servers. Each VM uses two
dedicated CPU cores and 1GB memory. Four extra VMs (same
configuration) are used as the Primus (lead/backup) masters,
connected with switches with an out-of-band 1Gbps control-
plane switch (one control-plane access link per master).

We implement Firepath in our testbed based on the avail-
able information in its paper [9]. Since Firepath has neither
published enough details nor provided its implementation, we
choose Yen’s k-SPF algorithm [13] for its routing calculation,
and Raft [16], [50] for its LSDB synchronization and master
reelection, which are the most classic and widely used ones in
practice. We also compare Primus with BGP in our testbed,
using the BGP implementation of Quagga Routing Software
Suite v1.2.4 [53]. The BGP routing advertisement timer and
connection recovery timer are set to be 1s and 4s in all
the rest experiments, respectively, which is based on private
conversations with operators in charge of one of the largest
production DCNs in China. We rely on Quagga’s Linux
interface monitoring scheme to detect local link failure in BGP.
We do not compare with link-state protocols (e.g., OSPF [43])
as they are not used in current large scale DCNs, because of
high overhead to maintain and broadcast the whole network’s
link-states among all switches.

In Primus, three UDP redundancies are generated for each
LS report and delivery. The heartbeat period and reelection
timeout in our Raft among masters are 5s and 30s, respectively.
Since Firepath has to sync LSDB when processing each LS,
we set those two Raft timeouts to shorter values of 1s and 5s in
Firepath, respectively. We have tried shorter timers, however,
they caused Raft leader osculation. 1s and 5s are the shortest
value which are stable in our testbed. The base RTT in our
testbed is less than 1ms in average and ∼10ms in tail, and the
TCP minRTO is set to 60ms. Unless explicitly specified, all
the rest experiments use above testbed and settings.

V. EVALUATION ON ROUTING PROCESSING

First, we evaluate the basic performance of routing process-
ing: 1) We test the processing time and memory consumption
on a real SONiC white-box switch when dealing with Primus
routing in a very large network topology (§V-A). 2) We test the
overall routing processing time (including master and switch)
under various network scales (§V-B). For all experiments,
we compare Primus with Firepath under the same topology
scale (and same hardwares). We do not compare with BGP
in this part since it is difficult to accurately emulate BGP’s
performance under large scale with only a few equipments.

A. Switch Processing

0
0.2
0.4
0.6
0.8

1

1E+0 1E+2 1E+4 1E+6

CD
F

Time (us)

Switch-proc
Switch-rt
Firepath

(a) Processing time.

Link Table 1.33 MB

Path Table 7.68 MB

Memory consumption

(b) Memory consumed.
Fig. 3. Processing time and memory consumed in a switch, in a network
having 10K ToRs, 400 Aggs and 16 Cores as shown in Fig. 1.

Setup: We start a Primus switch process on a Ruijie physical
switch, and install the link table (∼40K entries) and path table
(∼160K entries) for the whole topology shown in Fig. 1 (10K
ToRs, 400 Aggs and 16 Cores). We locally generate a random
LS change to this switch for 10K times, and measure the
routing processing time (from receiving the LS to updating
SONiC kernel routing table entries).
Results: Fig. 3(a) shows the CDF of the switch’s whole
processing time in Primus (“Switch-proc”) and in Firepath
(“Firepath”), and the time for updating switch kernel routes
in Primus (“Switch-rt”), for each LS change. Our smart table-
lookup makes the whole processing time down to 11us in 50th
percentile and 110us even in 99th percentile. The time for
updating kernel routes in the physical switch is about 41us
in 50th percentile and 92us in 99th percentile. However, due
to high computation complexity in such large DCN topology
(Fig. 1), it always takes more than 3s for routing calculation in
Firepath15, which is ∼104-105 higher than Primus. Note that
in Fig. 3(a) curve “Switch-rt” is higher than curve “Switch-
proc” because not every LS change triggers a switch kernel
route change. Particularly, due to our routing merge schemes
(§III-B), Primus switch only changes a kernel route entry when
all the paths of a next routing hop fail or a next routing hop has
one path back after all its paths fail. Fig. 3(b) shows that the
link table and path table only consume 1.33MB and 7.68MB
memory, respectively, which can even fit into the caches of
modern CPUs.

B. Overall Routing Processing

Setup: We connect two physical Dell servers directly together
through two 25Gbps NIC ports. We run one Primus master
process on one server machine, and multiple Primus switch

15We note that in Firepath some LS changes (e.g., upward links) can use
data-plane routing recovery such as ECMP, and do not need to wait for control-
plane routing calculation. §VI shows actual routing recovery time and this part
only focuses on the routing calculation speed.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

0.01

1

100

10000

0 2000 4000 6000 8000 10000

Ti
m

e
(m

s)

of Switches

Total-0UDP Master-proc
Switch-proc Total-1UDP
Total-2UDP Total-3UDP
Firepath

Fig. 4. Overall routing processing time as the network scale grows.

processes on the other server machine to emulate multiple
physical switches. The master process uses 9 sending threads
and 2 receiving threads with each thread binding to a dedicated
CPU core (hyper-threading disabled). Both the Primus master
and switches are installed with the complete data structures
for the whole topology shown in Fig. 1 (10K ToRs, 400 Aggs
and 16 Cores). We vary the number of switch processes from
200 to 10K with step length of 200. At each step, one switch
reports a random LS change to the master, and waits the mas-
ter to deliver LS updates/receive acknowledgments/reply the
response, for 10K times. For each LS, the master will deliver
it to all the switch processes thus to evaluate the overhead
of socket sending/receiving. Since all switch processes run
on the same physical machine, only one switch process will
actually perform the table-lookup calculation and change the
Linux kernel routes. All other switch processes only directly
replies an acknowledgment to the master after receiving a LS
update. We evaluate: 1) the overall processing time (from the
LS generated at the reporter switch to the master’s response
returned to the reporter switch), 2) the master processing time
(from the LS received at the master until the master finishes
sending all the LS updates through socket API), and 3) switch
processing time (from the LS update received at the switch
which calculates and changes routes until it finishes sending
the acknowledgments to the master).
Results: Fig. 4 shows the average time of Primus’s over-
all processing (“Total-xxx”), Primus’s master processing
(“Master-proc”), Primus’s switch processing (“Switch-proc”),
and Firepath’s overall processing, as the number of switch
processes grows. Eeach point is the average of 10K runs
and Primus’s master/switch processing time is evaluated when
generating zero UDP redundancies. As the results show,
even when controlling 10K switch processes, Primus’ to-
tal routing processing time is only ∼22ms when we gen-
erate zero UDP redundancies (“Total-0UDP”), and only
∼26ms/29ms/32ms when generating 1/2/3 UDP redundan-
cies16 (“Total-1UDP/2UDP/3UDP”) for each LS report/deliv-
ery, respectively. Compared to Firepath’s results under 10K
switches (which is close to the 4s time reported in their
paper [9]), Primus’s routing processing time is up to ∼148.3x
(0UDP) and ∼98.8x (3UDP) faster. In Primus, for 10K
switches, the master takes only about 5ms with most time
spent in socket send()/recv() (detailed breakdown not
in the figure), and the average processing time of the switch
is only about 1ms. Note that there is a big gap between the
overall processing time and the master/switch processing time.
The gap is due to the processing time of all the 10K switch

16In this speed testing experiment, we directly generate all the UDP
redundancies to the one master process and it forwards UDP redundancies
to switches, to emulate multiple backup masters.

processes running on the same physical machine. We cannot
accurately measure how much they contribute to the overall
routing processing time since those processes run in parallel
and independently.

VI. EVALUATION ON ROUTING CONVERGENCE

In this section, we evaluate Primus’s performance on routing
convergence, which includes two parts: 1) Macro-benchmarks
show how Primus’s fast routing convergence can benefit the
upper-layer applications (§VI-A). 2) Micro-benchmarks de-
tailedly examine Primus’s reaction time to network changes
and how well Primus handles control-plane failures (§VI-B).

We install the whole large topology of Fig. 1 both in
Primus’s and Firepath’s masters and switches, as such, al-
though our testbed only contains 14 switches and 4 masters,
the routing convergence time will be more close to the reality
in the large topology. Since Firepath’s routing calculation
algorithm consumes significant amount of time under such
large topology, we also evaluate a version of Firepath that only
calculates route for our testbed’s 14-switch topology (denoted
as “Firepath-noCalc”). BGP runs directly on the 14-switch
testbed and we do not manipulate its topology database scale.

A. Macro-benchmark

Setup: We inject a partition-aggregate application to our
testbed. Specifically, we start a server VM (under ToR 1.1) and
three client VMs (under ToR 1.9801). For every second, the
server round-robinly sends a small TCP single request to each
of 3 clients and waits for a 2KB response from each client,
which is a typical traffic pattern often existing in front-end data
centers [7]. Meanwhile, we inject random link flapping failures
to the network. Specifically, flapping failures (down and then
up, each down time < 30ms) will randomly appear on each
link (including control-plane links in Primus and Firepath).
The time interval between flaps on each link obeys a log-
normal distribution according to measurement results in [45],
with the average interval being 100s. We measure the job
completion time, which means all the 3 responses are received
by the sender. The experiment is conducted 1000s.

0
0.2
0.4
0.6
0.8

1

1 100 10000

CD
F

Time (ms)

BGP
Primus
Firepath
Firepath-noCalc

Fig. 5. Application’s job completion
time under random data-/control-plane
failures (failure pattern derived from
real measurements).

4

32

256

2048

0.2%

0.4%

0.8%

1.6%

3.2%

0.5 1.0 2.0 4.0

JC
T

(m
s)

Re
du

nd
an

cy
 (%

)

Time (s)

Redundancies
99th JCT
99.5th JCT

Fig. 6. Fraction of LSes received
from redundancies and the app’s tail
job completion time, as the control-
plane failures become severer.

Results: Fig. 5 shows the CDF of job completion time (JCT)
in Primus, BGP and Firepath. Since Primus has much faster
routing reaction time, the application is almost not affected
by the link flaps. The 99th and 99.5th percentile JCT are
only ∼9.4ms and ∼10.5ms, respectively, and the worst jobs
are completed within ∼67ms (encounters one TCP RTO). In
Firepath, the 99th and 99.5th percentile JCT are ∼1.02s and

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

∼1.05s, respectively, and the worst case is ∼4.1s, which is
∼100x slower than Primus. This is due to the long connectivity
loss caused by slow routing reaction (slow routing calculation
and LSDB sync between masters). Even when Firepath has
little routing calculation overhead (“Firepath-noCalc”), the
99.5th percentile JCT is still above 1s due to its control-plane
overhead (more details in §VI-B1). In BGP, the JCT is ∼11.9s
in 99th percentile and ∼12.9s in 99.5th percentile, which is
∼1226x higher than Primus.

B. Micro-benchmark

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Th
ro

ug
hp

ut
 (

Gb
ps

)

Time (s)

Primus (all cnd) Firepath Firepath-noCalc
Firepath-ctrl Firepath-2slave Firepath-3slave
Firepath-lead

2.1<->1.1
down

Fig. 7. Routing recovery time upon network changes. We also inject various
control-plane failures along with the data-link failure. “-ctrl” denotes reporter
switch’s control-plane link failure. “-2slave” and “-2slave” denote 2 or 3 slave
masters’ control-plane link failure. “-lead” denotes lead master failure.

1) Routing Reaction Time upon Network Changes: Since
there is no precise global clock among switches in our testbed,
we evaluate the accurate routing reaction time by monitoring
data transmission throughput. Specifically, we inject a UDP
flow sending infinite data at average rate 400Mbps from
a host below switch 1.9801 to a host below switch 1.1,
going through path 1.9801→2.393→3.1→2.1→1.1. During
data transmission, at moment 1, we tear down link 2.1↔1.1.
We measure the real-time receiving throughput at the receiver
in the time bin of 30ms, to see how long it takes for the
routing protocol to react. We also inject various control-plane
failures simultaneously with link 2.1↔1.1 failure. Specifically,
we generate transient failure to switch 2.1’s control-plane link
(“-ctrl”), 2 or 3 slave masters’ control-plane links (“-2slave”
and “-2slave”), and lead master (“-lead”).

Fig. 7 shows the throughput dynamics of the UDP flow.
After link 2.1↔1.1 down, it takes about 5.4s for Firepath to
recover the routing connectivity. This is mainly due to its slow
k-SPF algorithm (since Firepath-noCalc is almost not affected
by this single data-plane failure). The throughput in Primus is
similar to Firepath-noCalc, which never drops to zero (only
one time bin drops to ∼10Mbps) in the time bin of 30ms.
Note that counting UDP throughput in such small time bins
is not so accurate which may be affected by various factors
such as OS scheduling, but the levels are valid.

When we inject simultaneous control-plane failures,
Firepath takes more time to recover the routing connectivity.
Particularly, Firepath-ctrl takes about 100ms more, since it
encounters a TCP RTO because the reporting LS is dropped
by switch 2.1’s control-plane link failure. Firepath-2slave and
Firepath-3slave takes ∼2-3.5s more, because slave masters’
link failure blocks LSDB synchronization, and lead master
takes one or more heartbeat timeouts to finally replicate the
LSDB before it can disseminate the LS change. For lead
failure, it takes even more time (about 5s) for lead reelection

in Firepath. However, Primus well tolerate all these kinds of
control-plane failures, keeping routing recovery time within ms
level benefited from its redundancy schemes. Since the results
are similar for Primus under all conditions, we do not draw
them on the figure and use “Primus (all cnd)” to represent all
these cases for simplicity.

2) Anatomy of Primus’s Redundancy Efficiency: We con-
duct the same experiment as in §VI-A, but increase the lasting
time for each control-plane link failure to evaluate the effi-
ciency of Primus’s LS redundancy schemes. Fig. 6 shows the
fraction of LSes first received from UDP redundancies (among
all the LSes received from TCP main channels and UDP
redundancies) and the application’s 99th and 99.5th percentile
job completion time (JCT), as the control-plane failures lasting
time grows from 0.5s to 4s, respectively. Results show that
the fraction of LSes got from UDP redundancies (before TCP
main channels) grows from ∼0.4% to ∼2.4%, as the control-
plane network failures become severer. This helps Primus
to maintain the 99th and 99.5th percentile JCT under 10ms
and 70ms when control-plane link failure lasts for 2s, which
are significantly better than Firepath’s results even when its
failures only last for <30ms. Even when the failure lasting
time grows to 4s in such small network, Primus keeps the
99th and 99.5th percentile JCT under 2.2s and 3.2s.

VII. CONCLUSION

We presented Primus, a centralized DCN routing protocol
and system. Leveraging the regular DCN topologies, Primus
simplifies the routing into centralized link-state manage-
ment and simple table-lookup routing calculation. Moreover,
through low-cost control-plane fault-tolerant schemes, Primus
can keep very good performance even under complex control-
plane failures. We made Primus’s implementation publicly
available. Testbed experiments show that Primus can signif-
icantly improve the routing convergence time, being ∼1200x
and ∼100x faster than BGP and the state-of-the-art centralized
routing solution Firepath, respectively. As future works, we
plan to explore more advanced centralized control applications
(e.g., application-aware DCN routing) based on Primus.

ACKNOWLEDGMENT

We thank Kai Chen, Xiaoliang Wang, Dan Pei and the
anonymous INFOCOM reviewers for their helpful com-
ments on improving this paper. This research was partially
funded by the National Natural Science Foundation of China
(No.61872132), the Fundamental Research Funds for the
Central Universities, Training Program for Excellent Young
Innovators of Changsha, Tencent and Huawei.

REFERENCES

[1] T. Li Y. Rekhter and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC-4271, 2006.

[2] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. VL2: A Scalable and Flexible Data Center Network.
In SIGCOMM, 2009.

[3] Dinesh G. Dutt. BGP in the Data Center. O’Reilly Media, Inc., 2017.

[4] Ricardo Bennesby da Silva and Edjard Souza Mota. A survey on
approaches to reduce BGP interdomain routing convergence delay on
the Internet. IEEE Communications Surveys & Tutorials, 2017.

[5] Marcelo Yannuzzi, Xavier Masip Bruin, and Olivier Bonaventure. Open
issues in interdomain routing: a survey. IEEE network, 2005.

[6] Meg Walraed-Sullivan, Amin Vahdat, and Keith Marzullo. Aspen
Trees: Balancing Data Center Fault Tolerance, Scalability and Cost. In
CoNEXT, 2013.

[7] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas
Anderson. F10: A fault-tolerant engineered network. In NSDI, 2013.

[8] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael
Schapira, and Scott Shenker. Ensuring Connectivity via Data Plane
Mechanisms. In NSDI, 2013.

[9] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hoelzle, Stephen Stuart, and Amin Vahdat. Jupiter
Rising: A Decade of Clos Topologies and Centralized Control in
Google’s Datacenter Network. In SIGCOMM, 2015.

[10] Albert Greenberg, Gisli Hjalmtysson, David A Maltz, Andy Myers,
Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang.
A Clean Slate 4D Approach to Network Control and Management.
SIGCOMM, 2005.

[11] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford,
Aman Shaikh, and Jacobus Van Der Merwe. Design and Implementation
of a Routing Control Platform. In NSDI, 2005.

[12] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. Ethane: Taking control of the enterprise.
In SIGCOMM, 2007.

[13] Jin Y Yen. Finding the K Shortest Loopless Paths in a Network.
Management Science, 1971.

[14] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM
(JACM), 1987.

[15] OSPF Incremental SPF - Cisco. https://www.cisco.com/c/en/us/
td/docs/ios-xml/ios/iproute ospf/configuration/15-sy/iro-15-sy-book/
iro-incre-spf.pdf.

[16] Diego Ongaro and John Ousterhout. In Search of an Understandable
Consensus Algorithm. In USENIX ATC, 2014.

[17] Primus Code Base. https://github.com/GuihuaZhou/PrimusCode2.0.
[18] Ruijie Bare Metal Switches, B6510-48VS8CQ Switch.

https://www.ruijienetworks.com/products/switches/bare-metal-switches/
b6510-48vs8cq-switch.

[19] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nel-
son Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subra-
manya, and Amin Vahdat. PortLand: A Scalable Fault-Tolerant Layer 2
Data Center Network Fabric. In SIGCOMM, 2009.

[20] Teemu Koponen, Keith Amidon, Peter Balland, Martı́n Casado, Anupam
Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan
Jackson, et al. Network virtualization in multi-tenant datacenters. In
NSDI, 2014.

[21] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. Hedera: Dynamic Flow Scheduling
for Data Center Networks. In NSDI, 2010.

[22] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. Fastpass: A centralized zero-queue datacenter network.
SIGCOMM, 2015.

[23] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. WCMP: Weighted cost
multipathing for improved fairness in data centers. In EuroSys, 2014.

[24] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado,
Nick McKeown, and Scott Shenker. NOX: Towards an Operating System
for Networks. SIGCOMM, 2008.

[25] Teemu Koponen, Martin Casado, Natasha Gude, and Jeremy Stribling.
Distributed control platform for large-scale production networks, 2014.
US Patent 8,830,823.

[26] Open/R: Open routing for modern networks. https://engineering.fb.com/
connectivity/open-r-open-routing-for-modern-networks/.

[27] D. Pei, X. Zhao, L.Wang, D. Massey, A. Mankin, S. F.Wu, and L. Zhang.
Improving BGP convergence through consistency assertions. In IEEE
INFOCOM, 2002.

[28] Alex Fabrikant, Umar Syed, and Jennifer Rexford. There’s something
about MRAI: Timing diversity can exponentially worsen BGP conver-
gence. In INFOCOM, 2011.

[29] Anat Bremler-Barr, Yehuda Afek, and Shemer Schwarz. Improved BGP
convergence via ghost flushing. In INFOCOM, 2003.

[30] A. Atlas T. Przygienda, A. Sharma and J. Drake. RIFT Routing in Fat
Trees. RFC draft-przygienda-rift-05, 2018.

[31] A Atlas and A Zinin. Basic specification for IP fast reroute: loop-free
alternates. RFC 5286, 2008.

[32] Stewart Bryant, Clarence Filsfils, Stefano Previdi, Mike Shand, and Ning
So. Remote loop-free alternate (LFA) fast reroute (FRR). RFC 7490,
2015.

[33] G Enyedi, A Csaszar, A Atlas, C Bowers, and A Gopalan. An algorithm
for computing IP/LDP fast reroute using maximally redundant trees
(MRT-FRR). RFC 7811, 2016.

[34] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto
Dainotti, Stefano Vissicchio, and Laurent Vanbever. Blink: Fast connec-
tivity recovery entirely in the data plane. In NSDI, 2019.

[35] Guo Chen, Youjian Zhao, Hailiang Xu, Dan Pei, and Dan Li. F2Tree:
Rapid Failure Recovery for Routing in Production Data Center Net-
works. IEEE/ACM Transactions on Networking (TON), 2017.

[36] Nate Kushman, Srikanth Kandula, Dina Katabi, and Bruce M Maggs.
R-BGP: Staying connected in a connected world. NSDI, 2007.

[37] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent
Vanbever. Swift: Predictive fast reroute. In SIGCOMM, 2017.

[38] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving high utilization
with software-driven wan. In SIGCOMM, 2013.

[39] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,
Min Zhu, et al. B4: Experience with a globally-deployed software
defined WAN. In SIGCOMM, 2013.

[40] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu,
Richard Alimi, Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang,
Kirill Mendelev, et al. B4 and after: Managing hierarchy, partitioning,
and asymmetry for availability and scale in Google’s software-defined
WAN. In SIGCOMM, 2018.

[41] D. Katz and D. Ward. Bidirectional Forwarding Detection (BFD). RFC-
5880, 2010.

[42] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
Scalable, Commodity Data Center Network Architecture. In SIGCOMM,
2008.

[43] John Moy. OSPF Version 2. RFC 2328, 1998.
[44] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D.

Joseph. Understanding TCP Incast Throughput Collapse in Datacenter
Networks. In Proceedings of the 1st ACM Workshop on Research on
Enterprise Networking, WREN ’09, pages 73–82. ACM, 2009.

[45] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Impli-
cations. SIGCOMM, 2011.

[46] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. Congestion control for large-scale
RDMA deployments. In SIGCOMM, 2015.

[47] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng
Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A High
Performance, Server-centric Network Architecture for Modular Data
Centers. In SIGCOMM, 2009.

[48] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey.
Jellyfish: Networking Data Centers Randomly. In NSDI, 2012.

[49] SONiC: Software for Open Networking in the Cloud. https://azure.
github.io/SONiC/.

[50] Qihoo360’s implementation of the Raft consensus protocol. https:
//github.com/Qihoo360/floyd.

[51] DPDK: Data Plane Development Kit. https://www.dpdk.org/.
[52] Virtual Route Forwarding Design Guide - Cisco. https:

//www.cisco.com/c/en/us/td/docs/voice ip comm/cucme/vrf/design/
guide/vrfDesignGuide.html.

[53] Quagga Routing Suite. http://www.nongnu.org/quagga/.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

		2021-07-22T14:00:40-0400
	Preflight Ticket Signature

