
2624 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fast, Scalable and Robust Centralized Routing
for Data Center Networks

Fusheng Lin , Hongyu Wang, Guo Chen , Member, IEEE, Guihua Zhou, Tingting Xu , Student Member, IEEE,
Dehui Wei , Li Chen, Member, IEEE, Yuanwei Lu, Andrew Qu, Hua Shao,

and Hongbo Jiang , Senior Member, IEEE

Abstract— This paper presents a fast and robust centralized
data center network (DCN) routing solution, called Primus. For
fast routing calculation, Primus uses centralized controllers to
collect/disseminate the network’s link-states (LS), and offload
the actual routing calculation onto each switch. Observing
that the routing changes can be classified into a few fixed
patterns in DCNs which have regular topologies, we simplify
each switch’s routing calculation into a table-lookup manner,
i.e., comparing LS changes with pre-installed base topology
and updating routing paths according to predefined rules.
As such, the routing calculation time at each switch only
needs 10s of us even in a large network topology containing
10K+ switches. For efficient controller fault-tolerance, Primus
purposely uses reporter switch to ensure the LS updates
successfully delivered to all affected switches. As such, Primus
can use multiple stateless controllers and little redundant traffic
to tolerate failures, which incurs little overhead under normal
case, and keeps 10s of ms fast routing reaction time even under
complex data-/control-plane failures. We design, implement and
evaluate Primus with extensive experiments on Linux-machine
controllers and white-box switches. Primus provides ∼1200x
and ∼100x shorter convergence time than current distributed
protocol BGP and the state-of-the-art centralized routing

Manuscript received 16 April 2022; revised 24 October 2022 and
20 February 2023; accepted 26 February 2023; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor C. Wu. Date of publication 4 April
2023; date of current version 19 December 2023. This work was supported
in part by the National Natural Science Foundation of China under Grant
62222204 and Grant 62172148, in part by the National Key Research and
Development Program of China under Grant 2020YFB2104000, in part by
the Natural Science Foundation of Hunan Province for Excellent Young
Scholars, in part by the Training Program for Excellent Young Innovators
of Changsha, and in part by Tencent. This article was presented in part at
the IEEE INFOCOM 2021 [DOI: 10.1109/INFOCOM42981.2021.9488689].
(Fusheng Lin and Hongyu Wang are co-first authors.) (Corresponding author:
Guo Chen.)

Fusheng Lin was with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, Hunan 410012, China. He is now
with Tencent, Shenzhen 518054, China (e-mail: linfusheng@hnu.edu.cn).

Hongyu Wang, Guo Chen, and Hongbo Jiang are with the College of
Computer Science and Electronic Engineering, Hunan University, Changsha,
Hunan 410012, China (e-mail: why2021@hnu.edu.cn; guochen@hnu.edu.cn;
hongbojiang2004@gmail.com).

Guihua Zhou and Andrew Qu are with Tencent, Shenzhen 518054, China
(e-mail: guluguluhuli@hnu.edu.cn; andrewxqu@tencent.com).

Tingting Xu is with the Department of Computer Science and
Technology, Nanjing University, Nanjing, Jiangsu 210093, China (e-mail:
xutingting@smail.nju.edu.cn).

Dehui Wei is with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing
100876, China (e-mail: dehuiwei@bupt.edu.cn).

Li Chen is with the Zhongguancun Laboratory, Beijing 100081, China
(e-mail: Crischenli@gmail.com).

Yuanwei Lu and Hua Shao were with Tencent, Shenzhen 518054,
China. They are now with Pinduoduo, Shanghai 200000, China (e-mail:
yuanweilu612@live.com; huashao770@gmail.com).

Digital Object Identifier 10.1109/TNET.2023.3259541

solution, respectively. Furthermore, Primus maintains good
routing controllability/manageability thanks to its centralized
architecture, which enables us to build several advanced routing
features in our testbed, including routing failure visualization
and weighted-cost-multi-path routing.

Index Terms— Data center networks, centralized routing,
network protocols.

I. INTRODUCTION

A. Current Distributed Routing

BGP [1] is the current de facto data center network (DCN)
routing protocol [2], [3]. However, such distributed

routing protocol has two well-known open issues [4], [5],
which now become increasingly problematic as the DCN
scales larger. First, the routing convergence procedure is
slow. As large number of switches independently react
to network changes without a centralized coordination,
it may incur excessively unnecessary routing communication
and calculation, which can cause long routing connectivity
loss although physical network remains connected [6],
[7], [8]. Second, it is hard to control and manage the
whole network’s routing with thousands of switches making
decisions independently, e.g., BGP configurations in large-
scale DCNs can be daunting [9].

B. The Rise of Centralized Routing and Remaining Problems

At least from [10] and [11], the community has started
to think of using centralized way to address above intrinsic
problems in the distributed routing protocols. Ethane [12] may
be the first successful application of centralized control on
a medium-scale campus network. However, before Google
published Firepath (i.e., its DCN routing system) in 2015 [9],
people were still unsure about whether the centralized
way can handle the whole network’s routing for large
DCNs, which contain more than thousands of routing nodes
(i.e., L3 switches) and require stringently high networking
performance.

Firepath [9] is (possible) the first and only published work
that has successfully designed/implemented/operated a full
routing protocol and system using a centralized control for
DCNs (other works are not a full routing protocol and [13]
still uses Firepath’s algorithm for intra-DCN routing. See §II
for details). Centralized architecture does help Firepath greatly
accelerate routing convergence, by eliminating broadcasting
communication between switches and reducing the routing

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9216-789X
https://orcid.org/0000-0002-6069-6869
https://orcid.org/0000-0002-7917-4729
https://orcid.org/0000-0002-6952-5062
https://orcid.org/0000-0001-7372-2539

LIN et al.: FAST, SCALABLE AND ROBUST CENTRALIZED ROUTING FOR DATA CENTER NETWORKS 2625

inconsistency caused by an independent calculation on each
switch. Moreover, it significantly simplifies the routing control
and management. Nonetheless, there remain two major
challenges not well addressed in Firepath, which limit the
performance of its centralized routing when DCN scales larger.
Specifically:
• How to calculate the routing fast enough? Obviously,

using a centralized controller to directly calculate
the routing of the entire network using shortest-path
first (SPF) algorithms will be too slow. Therefore,
the centralized controller in Firepath is only used to
collect and store the whole network’s link-state database
(LSDB), and disseminates link-state (LS) changes to the
switches. Each switch then distributedly calculates its
routing paths. On the downside, we emphasize that it
is still very time-consuming to calculate shortest paths
on each switch, since performing SPF algorithms on the
whole large DCN topology is required. In a topology with
n nodes, m edges and k equal-cost shortest paths, a typical
k-SPF algorithm has a very high time complexity of
O(kn(m+nlogn) [14].1 Our experiments show that for a
DCN topology with 10K switches (Fig. 1), it takes more
than 3 seconds for a switch to calculate the shortest paths
upon one LS change. This may be the reason why a single
link failure causes 4s of routing connectivity loss to a rack
of servers in Firepath (Table IV in [9]).

• How to gracefully handle control-plane failure? In
case of controller failures, Firepath runs multiple backup
controllers, each maintaining an LSDB of the whole
network. To avoid routing inconsistency, all controllers
always keep their LSDBs synced. However, this delays
the routing reaction. For example, if using consensus
protocols (e.g., [17]) to keep LSDBs consistent among
multiple backups, when the controller processes an
LS, it will incur extra overhead such as logging and
replicating states between multiple backups. Moreover,
as DCN scales larger, failures would also be the norm
in the control-plane network, since there are a large
number of control-plane switches/links. Therefore LS
updates reported to the controller may be lost due
to control-plane network failures. Then, the reporting
switch either has to wait for some retransmission timeout
(e.g., upon temporary failures) or wait for a controller
reelection procedure (e.g., when the controller’s access
link permanently down), both incurring significant delay.

C. Our Contributions

To tame above challenges, we propose Primus, a fast and
robust centralized intra-DCN2 routing protocol and system.
Primus takes philosophies totally different from Firepath for
routing calculation and control-plane failure handling:
• Primus simplifies the routing calculation into a

table-lookup manner, which is fast and scalable.
In Primus, we follow the architecture of [9], using a

1We note that there exist some optimizations to the k-SPF algorithm
(e.g., [15], [16]). However, their calculation time still grows fast as the
topology scales larger, which is undesired for scalability.

2We still assume the use of BGP for external routing. Details in §III-E.

centralized master3 to monitor all the link-states and
each switch calculates routes by itself. However, each
switch calculate the routes in a more efficient way
than the classical calculation. Observing that DCNs
have regular topologies and the routing changes can
be classified into a few fixed patterns, we let each
switch simply compare the current link-states with the
preinstalled base topology, and disable or enable the
routing entries in its preinstalled base routing table
according to predefined rules. According to the routing
change patterns, we develop a smart indexing technique
which provides O(1) routing-path table lookup time for an
LS change.4 The whole routing updating time at a switch
for an LS change only takes 10s of µs even in a large
network topology containing 10K+ switches. Moreover,
we devise novel data structures so the memory footprint
at each switch is only <10MB for such large network.
(§III-B)

• Primus uses multiple stateless controllers and little
redundant traffic to tolerate control-plane failures,
which incurs low overhead in the normal, meanwhile
achieving fast routing reaction even under complex
control-plane failures. Particularly, we adopt multiple
hot-standby backup masters as in [9] to tolerate
master failure. However, the reporter switch is logically
responsible for the success of delivering LS changes
to the whole network (but still physically through the
master). As such, masters can be stateless without
remembering the whole network’s link-states. Therefore,
handling master failure is easy and low-cost because any
backup master can process an LS change and there is
no need to wait for synchronization between multiple
masters.5 Moreover, to keep fast reaction upon failures,
Primus adds some redundancies whenever passing LS
messages. Those redundant LS messages are often on
different failure domains (e.g., processed by different
backup masters and control-plane network devices), and
the routing can be correctly performed if at least one LS
message copy has been successfully processed. As such,
Primus can keep fast routing convergence (10s of ms for
a network with 10K+ switches), even under control-plane
network failure and master failure. (§III-C)

We have an open-sourced implementation of Primus
(available at [18]). Our Primus master implementation runs
on Linux machines, and Primus switch implementation can
run both on Ruijie white-box switches [19] and Linux-based
software switches. Our testbed evaluation shows that for a
large network containing 10K+ switches, upon an LS change,
Primus can finish the routing updates of the whole network
within 33ms, which is ∼98.8x faster than Firepath. Based
on fast and robust routing, applications using Primus have
three orders of magnitude better 99th and 99.5th percentile
performance compared to those using BGP, and ∼100x better

3“Master” and “controller” are used interchangeably in this paper.
4Note that the table update time is not O(1) since it depends on the number

of routing-path entries which are affected by the LS change.
5For centralized control/management demands, masters can later slowly

synchronize the latest complete LS changes with each other after the routing
has been updated. See §III-C and §IV for details.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

2626 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

compared to Firepath, respectively. We believe that Primus
has set a new performance milestone for building centralized
routing for large scale DCNs. Furthermore, based on Primus’s
high routing controllability/manageability, we build several
advanced routing features in our testbed, including routing
failure visualization and weighted-cost-multi-path (WCMP)
routing.

A shorter conference version [20] of this paper appeared in
INFOCOM 2021. The previous version did not demonstrate
Primus’ characteristics beyond being more efficient in data-
plane routing recovery. Compared with the previous version,
in this paper, we show the controllability and manageability
of Primus through two scenarios: network failure location
and dynamic WCMP. Also, Primus implementations on some
classical topologies other than fat tree are discussed. Moreover,
the effectiveness of the redundancy mechanism proposed by
Primus is modeled and evaluated. In addition, we introduce
how to update the base topology for Primus and evaluate its
efficiency, and discuss several design choices in more details.

II. RELATED WORK

Other centralized routing control: Besides Firepath, there
are also previous works (e.g., [2], [13], [21], [22], [23], [24],
[25], [26], [27], [28]) using centralized control to address
part of the routing problems in DCN. However, they are not
complete routing protocols. For example, [23], [24], and [25]
use centralized controllers to help scheduling network flows
on certain paths, thus to minimize flow completion time
or balance the network utilization. However, they still rely
on underlying routing protocols to maintain and calculate
the routing paths (e.g., [24] is implemented on top of
BGP). [21] takes the same idea of using centralized controllers
to collect/disseminate link-states. However, it aims to build
a layer 2 routing based on MAC address, which does not
match the layer 3 IP routing architecture in modern data
center physical networks. Moreover, [21] did not address
the problems discussed in §I-B. [2], [22] utilize centralized
control to translate between physical and virtual addresses for
network virtualization. [26], [27], [28] build underlying system
(e.g., switches softwares and distributed systems) to provide
centralized abstraction for data center networks. However,
they do not build routing protocols and algorithms on top
of the system. Orion [13] presents Google’s latest distributed
software-defined networking (SDN) platform, which can be
used as the control plane for data center routing. However,
Orion’s intra-DCN routing control plane still takes Firepath as
the specific routing algorithms.

Improved distributed routing protocol: Many works,
e.g., [29], [30], and [31], try to improve BGP using various
techniques. Although big improvements have been achieved,
the intrinsic drawbacks in distributed routing still remain to
be open questions (e.g., convergence still requires seconds
to minutes) [4], [30]. Reference [32] presents a BGP-based
routing design for data center. Although providing better
reliability and flexibility, it still requires a second-level
convergence time. RIFT [33] utilizes the pre-knowledge of the
DCN fat tree topology to simplify the routing and limit the
broadcasting area. However, staying as a distributed protocol,

Fig. 1. Primus over an example DCN.

RIFT still has intrinsically poor routing controllability (making
decisions distributedly) and slow convergence time (link-state
broadcast, calculation and waiting timers). Since RIFT is still
an RFC draft (working in progress) lacking implementation
details, we are not able to compare with it in our testbed.

Data-plane connectivity recovery: There are many works
(e.g., [6], [7], [8], [34], [35], [36], [37], [38], [39], [40]) aiming
to provide fast data-plane connectivity recovery before routing
convergence. Fast rerouting (FRR) techniques (e.g., [34], [35],
[36]) focus on the Internet scenarios. However, in DCN
with dense fat tree topology, for downward routing paths,
it does not satisfy the loop-free requirements of these FRR
techniques and still require control-plane convergence (single
next-hop),6 so typically they are not applied in DCNs [3].
Several works [6], [7], [8], [38] focus on fast data-plane
recovery in DCN. However, they either require significant
changes to physical topology [6], [38], or may incur temporary
routing loops or use non-shortest bounce-back paths [7], [8].
Moreover, these works are complementary to Primus. Primus
can leverage those data-plane techniques to further accelerate
routing recovery before control-plane routing convergence.

Centralized routing in WAN: Previous works build
centralized routing system for traffic engineering in inter-DCN
wide-area networks (WANs) (e.g., [41], [42], [43]), which is
different from the intra-DCN environment.

III. PRIMUS DESIGN

A. Architecture

In Primus, we follow the architecture of [9], using a central-
ized master to collect/disseminate all the LSes. Each switch
simply compares the current link-states with the preinstalled
base topology, and disables or enables the routing entries
in its preinstalled base routing table according to predefined
rules. This table-lookup manner greatly simplifies the routing
calculation. Moreover, it maintains the centralized routing
manageability/controllability through monitoring global LSes.

Master communicates with each switch through an out-of-
band control-plane network as shown in Fig. 1. Each switch
monitors its local data-plane links (using standard failure
detection scheme such as [44]) and reports to the master
upon a local LS change. After receiving an LS, the master
delivers updates to all the switches whose routing may be
affected. Possibly affected switches are fixed in a certain DCN
topology, so the master uses predefined rules to quickly find
them. Notes that upward link affects all switches in the subtree
below it, e.g., in Fig. 1 link 2.1→3.1 possibly affects routing
in switch 2.1 and 1.1-1.100. Similarly, downward link affects
all upper layer switches connected to it (with one or two
hops) and the subtree below those switches, e.g., in Fig. 1

6For upward routing paths, there are multiple equal-cost next-hops so it
simply uses ECMP fast data-plane rerouting instead of those FRR techniques.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: FAST, SCALABLE AND ROBUST CENTRALIZED ROUTING FOR DATA CENTER NETWORKS 2627

Fig. 2. Primus’s fault-tolerant link-state updating scheme.

link 2.1→1.1 possibly affects switch 2.1, 3.1-3.4, the leftmost
Agg switch in each pod, and all ToR switches except 1.1.

Each switch is pre-configured with the static address of the
master, and setups a long-lived bidirectional reliable transport
connection (e.g., TCP) to the master through control-plane
network for passing LS messages (called main channel).
As Fig. 2(a) shows, upon detecting a local LS change, a switch
will report it to the master through the main channel (dashed
red arrow-line). Each LS change has a unique ascending
ID per link. Whenever receiving a new LS, the master will
deliver the LS to all the possibly affected switches7 through
their main channels (dashed yellow arrow-line). A switch will
reply an acknowledgment to the master over main channel
after successfully receiving the LS and updating its routing
(dashed black arrow-line). The master will reply a response
to the reporting switch over the main channel (dashed green
arrow-line), when it successfully delivers the LS to all the
affected switches and receives their acknowledgments. If not
receiving the master’s response, the reporting switch will keep
retransmitting the LS (after certain timeout) until succeed or
the master changes (in case of master reelection). Note that
the timeout can be relatively long since we have fast fault-
tolerant schemes (§III-C). Another possible option is to let the
leader immediately send an ACK to the reporter switch without
merging all the ACKs into one. However, this may incur higher
overhead on several aspects: 1) The reporter switch needs to
maintain ACK states and selectively retransmit LSes to each
affected switch (possibly maintain an RTO timer for each
affected switch) if any of the ACK does not return. However,
in our design, the sending of LS to all affected switches is
treated as a single event on the reporter, and the master only
needs to count the number of returned ACKs, which is easy
to handle and light-weight. 2) This may incur higher traffic
volume for passing LSes, including many ACKs back to the
reporter and LS retransmission from the reporter to the master.

Next, we introduce in details how Primus’s design
achieves 1) quick routing calculation (§III-B), 2) efficient
fault-tolerance (§III-C), and 3) maintains high controllabil-
ity/manageability (§III-D), respectively.

B. Routing Calculation

For ease of presentation, in the rest of paper, we assume
that the DCN uses the most popular three-layer fat tree
topology [2], [9], [21], [45]. The topology contains three
layers of switches, i.e., Core, Aggregation (Agg) and Top-of-
Rack (ToR) switches, respectively. k ToR switches and s Agg

7There must be affected switches in Fig. 1, if not, the master will not deliver
the LS.

TABLE I
SNAPSHOT OF LINK TABLE OF SWITCH 1.1 IN FIG. 1

TABLE II
SNAPSHOT OF LINK TABLE OF SWITCH 1.1 IN FIG. 1

switches form a pod with each ToR connected to each Agg.
We denote the number of pods as p. Each Agg switch in a
pod is connected to n different Core switches, and each Core
switch is connected to every pod. The total number of Core,
Agg, and ToR switches is s×n, s×p and k×p, respectively.
Figure 1 shows an example topology with k = 100, s = 4,
p = 100 and n = 4, which is used for production DCNs in
Tencent. Note that Primus also works for fat tree with more
layers, and can be easily adapted to other topologies (see §IV).

Each switch maintains two table data structures for routing
calculation.8

Path table: It includes all the equal-cost shortest paths to
every destination in the topology and lists all the links along
that path.9 We do not merge paths (e.g., with the same next-
hop) in the path table for ease of routing calculation (detailed
reasons in §IV). The path table also records the number of
failed links (denoted as FL) in each path. Once receiving a
link-state update from the master, the switch first finds the path
entries that contain that link (discuss how to find them later),
then increases (for link failure) or decreases (for link recovery)
FL of those path entries by one. The switch can detect if a
path can be used for routing in O(1) time by checking whether
its FL equals zero.

For the topology shown in Fig. 1, there are ∼160K paths in
the path table, which will only take about 7.7M bytes in each
switch (experiments latter in §VI-A). Note that this table is an
internal data structure used by the Primus routing calculation

8We only discuss routing to the servers for ease of presentation. Routing
to switches is similar and can be easily drawn from the following design.

9Access links from servers to ToRs are not listed in the paths, since those
links are only used in L2 switching but not in L3 routing.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

2628 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

algorithm, and the actual routing/forwarding table in the switch
data plane can be much smaller because the paths with the
same first next-hop and the same destination can be merged
into one route. Each switch can distributedly merge its routes
and check whether the merged route is working by detecting
if there is at least one path working (i.e., FL = 0) within that
route. It is also simple to make this merging and checking
process very fast, e.g., using bitwise AND on the FLs of all
paths. Table I shows a snapshot of switch 1.1’s path table,
assuming the link from switch 1.1 to 2.1 fails (the affected
entries’ FL increased by 1).

Link table: It records the current state of all the links in the
base topology. Apparently, once a link-state changes, it would
cost too much for a brute-force search in the path table to find
which entries will be affected. As such, we pre-calculate all
the affected paths for each link, and maintain a data structure
in each link table entry to smartly index all the path entries in
the path table affected by this link, in O(1) time complexity.

An intuitive data structure for maintaining such index would
be a bitmap, with each bit indicating whether a path contains
this link. However, such simple bitmap would consume too
much memory since there are k× s×n entires in total in the
path table. For example, in Fig. 1, such bitmap needs 160Kb
memory to index all the path entires and each of the 40K
links needs one such bitmap, which costs ∼6.6Gb in total.
Such memory consumption would be prohibitive as the scale
grows larger.

Luckily, in DCN topology there are only several fixed
patterns of how a link-state change will affect the routing
paths. Therefore, it is not necessary to use a bitmap that can
represent any combination of all the routing paths. Specifically,
from a switch’s point of view, links in the fat tree topology
can be classified as four types:
• Type 1. For upward link from ToR to Agg, it will affect

n× k× p path entries in total, i.e., the n paths stemmed
from this Agg to all the k × p ToRs.10

• Type 2. For upward link from Agg to Core, it will affect
k×(p−1) path entries in total, i.e., the single path through
this link to all the k × (p − 1) destinations in all other
pods.

• Type 3. For downward link from Core to Agg, it will
affect k path entries in total, i.e., the single path through
this link to all the k destinations in this pod.

• Type 4. For downward link from Agg to ToR, it will affect
n path entries in total, i.e., the n paths through this Agg
to the single destination of the ToR.

As such, we can use a compact data structure that only needs
to indicate the type and the first path affected by this link, and
we can quickly index all the affected path entries according
to the above patterns. Such data structure only requires 2 bits
(for type) plus log(k × s × n) bits for the index of the first
affected entry. For the example topology shown in Fig. 1, the
link table in our implementation only consumes about 1.3MB
memory in total (experiments in §VI-A).

10For ease of organizing tables, we assume that the routing between
switches must go up to the Core and then go down, even in the same pod.
However, the actual routing in data-plane within a pod use shorter paths that
only traverse the Agg or ToR.

Table II shows a snapshot of switch 1.1’s link table in Fig. 1.
The last column is the index of the affected path entries.
According to the index, the switch can find the first affected
path table entry based on First and find all the rest of the
affected path table entries based on Type. For example, if link
1.1→2.1 failed, switch 1.1 would find Type: First to be 1:1 in
the link table. This means the first affected path table entry is
No.1 (First = 1) and the next 40000-1 entries (4×100×100 as
Type = 1) are also affected. Then switch 1.1 will increase all
these entries’ FL by one. Similarly, if link 2.1→3.1 failed,
it would check Type:First and find that the first affected path
table entry is No.401 (First = 401). Also, the next 9900-1
entries (100 × 99 as Type = 2) are also affected. Note that
there is a fixed gap of four to the next affected path table entry
since there are four upward links from each Agg to Core. All
these entries’ FL will then be increased by one.

C. Handling Control-Plane Failure

The reliable LS report scheme described in §III-A ensures
the network has an eventual consistent view to the latest LS
change, without relying on states maintained in the master
or other parts of the network. As such, we can easily use
control-plane redundancy (backup masters and redundant LS
messages) to tolerate failures. Specifically, Primus takes the
following fault-tolerant schemes.

Slight redundancy for speed: We use multiple backup
masters and one lead master. As Fig. 2 shows, the lead master
is active to collect/disseminate all LS messages from main
channels, and multiple backup masters work as hot standbys
and process redundant LS messages. Each switch is pre-
configured with the static address of each backup master.
Each switch also maintains a backup main channel (reliable)
between each backup master. Different from the main channel,
those backup main channels are only lazily monitored through
slow hello, being prepared for the possible master reelection,
but never used to pass LS messages until a backup becomes the
lead. For a switch, whenever detecting a local LS change in the
data-plane, besides reporting the LS through its main channel,
it also sends multiple copies of the LS to backup masters
through other reachable switches using normal data-plane
network (solid red arrow-line in Fig. 2(b)). Reporter sends
multiple copies of the LS through other reachable switches in
data-plane, so it can tolerate the failure of the reporter’s single
control-plane access link. These switches will immediately
forward those copies to the backup masters through their
own control-plane links (dashed red arrow-line in Fig. 2(b)).
Similarly, backup masters will send such copies to some other
switches (which will forward) to deliver LS updates to a target
switch (yellow arrow-line in Fig. 2(b)).

Above LS copies (called redundancies) are transferred
using low-overhead unreliable transport (e.g., UDP) through
randomly picked (and different) forwarding switches and
backup masters, and are never ACKed or retransmitted. This
creates multiple other channels between the master and
switches. Target switches will process the first arrived LS
message among all the copies (including the origin) and
neglect others (based on the message ID). Note that a switch

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: FAST, SCALABLE AND ROBUST CENTRALIZED ROUTING FOR DATA CENTER NETWORKS 2629

always sends an ACK to the lead master through the main
channel when it has processed this LS for the first time
(no matter from main channel or other channels), thus the
lead master can quickly notify the reporting switch when the
whole network has finished the routing updates. Based on
above redundancy schemes, the routing reaction in Primus still
keeps fast even under complex control-plane or master failures,
as long as at least one main/other channel is working.

Slow detection and synchronization with low-overhead:
Switches detect the main channel status through periodical
hellos. With the aforementioned fault-tolerant scheme, this
hello can be very slow (e.g., minute-level TCP keep-alive)
without delaying routing reaction upon control-plane failures.
Once the main channel is detected as dead, we will setup
indirect channels to work as the new main channel to pass
control-plane messages. For a switch, if it detects the failure
of its main channel, it notifies several other switches (possibly)
reachable in data-plane (according to its local routing table)
and picks the first responding one to establish an indirect
reliable data-plane communication channel through it to the
master, working as the new main channel. Similarly, indirect
main channel will be setup when the master detects the failure
of certain target switch’s main channel.

We run a consensus protocol (e.g., Raft [17]) among all
masters (including the lead and the backups). Note that the
consensus protocol does not affect normal LS processing, but
only runs in the background to detect master failure, and
reelect lead master. Once a new lead is elected after the
original one fails, it will notify all the switches. For centralized
manageability and controllability, to maintain global network
states in case of master failure, the consensus protocol also
slowly exchanges latest global link-states between the lead
and backup masters in the background (just best effort but not
mandatory for routing correctness, discussed in §IV). There
exists a minor problem that the reporter cannot receive the
ACK from the leader that indicates the success of delivering
all the LSes to all the affected switches. However, the actual
routing recovery has already completed and it may only
incur some retransmission of the LSes from the reporter after
relatively long timeouts.

Note that the consensus protocol is decoupled with normal
routing reaction upon LS changes, so it can run at a very low
frequency, incurring low overhead. We mentioned earlier that
masters can be stateless, which does not contradict with the
description here. The main tasks for consensus protocol are
running in the background to detect master failure and reelect
the lead master, but not for maintaining states. Upon the lead
master failure, other backup masters or data-plane switches can
help delivering LS changes. For data-plane routing recovery,
masters can be fully stateless about global LS states, and the
reporter switch will retransmit the LS if it is not received
by all the affected switches. Since each switch maintains the
path and link table locally, all the things that switches need
to do is to change its local tables according to certain rules,
such as routing equally or in a weighted way using those
working paths. Once a new lead is elected after the original
one fails, it will notify all the switches and collect/deliver
LSes with no need of history states. If there is a need for

advanced centralized manageability and controllability, such
as for visualizing failure localization, masters may need to be
stateful for control-plane usage. Under such case, consensus
protocol can slowly exchange latest global link-states among
masters in the background. However, such control plane
management functionalities can be asynchronous, which does
not delay the fast data-plane recovery.

Effectiveness and bandwidth usage of LS redundancy:
We quantitatively analyze the effectiveness of the redundancy
mechanism in theory. Our analysis is based on the following
basic assumptions:
• The reporter and the affected switches are alive.
• Switches/Links in the control-plane have same failure

possibilities as the data-plane counterparts.
By assuming the failure probability of each link, we model the
probability of successful transmission of LSes between the
main channel and backup channels, respectively, and finally
derive the effectiveness model of the LS redundancy. Solution
to the above model under different scenarios can be found in
the results in §IX-A (Fig. 11). Our results show that if using
3-UDP backup channels, the average probability of success is
99.6675%.

We then evaluate bandwidth utilization by evaluating
the number of packets generated in redundant links when
transferring LSes. Solution to this model can be found in the
results in §IX-B (Table. IV). The results show that even with
3UDP redundant channels, the average additional traffic in the
network is only 101.03KB/s.

D. Routing Controllability/Manageability

Besides the very fast data-plane routing recovery to network
changes benefited from the table-lookup method and stateless
masters, in this section, we show that Primus still can meet
the common features of centralized DCNs, i.e., controllability
and manageability. Specifically, benefited from the table data
structures listing all the routing paths, it is natural and easy
to control/manage each switch’s routing by manipulating its
path entries. We use two example scenarios to show Primus’
controllability and manageability. Note that these are only
example scenarios. Primus’ controllability and manageability
are by no means limited to these scenarios. Moreover, these are
common features which are also applicable to other centralized
routing schemes for DCN.

1) Network Failure Localization: Primus master collects
global link-states in a centralized manner, making it natural
and simple to locate failures in switches or links through
the master. As experiments in §VIII show, we can easily
visualize the location of network failure only based on existing
information maintained in Primus master, without any extra
monitoring systems. We note that information in the master
can only help with connectivity problems, and other failures
(e.g., packet random loss) still require extra tools to debug.
However, quickly figuring out connectivity problems alone can
already significantly simplify the daily DCN management [46].

2) Dynamic WCMP: Link or switch failures usually
happen in large DCNs which break the network symmetry.
For example, in Fig. 1, if the links from switch 2.1 to

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

2630 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 3. (a) While there is no link failure in the network, the traffic is
evenly distributed among network links. (b) While the link failure breaks the
network symmetry, dynamic WCMP recalculates the weight and redistribute
the network traffic.

switch 3.1 and switch 3.2 fail, ECMP weights to the four next-
hops (switch 2.1 to 2.4) in switch 1.1 is 1:1:1:1. The bandwidth
for paths containing switch 2.1 will be half compare to other
paths. The ideal weights in switch 1.1 should be 1:2:2:2.

Weighted-cost multi-path routing (WCMP) [47] is an
effective method for balancing traffic among paths in a
network that has become asymmetric. Primus can easily
support above dynamic WCMP since it lists all the base paths
in the path table. Specifically, if link or switch failures occur
and break the network’s symmetry, the master will deliver
the LS messages to the affected switches. Each switch can
then dynamically calculate the weight of each next-hop route
according to the current weight of paths through this route.
The detailed steps and algorithms for this process are described
below.

Both master and switches store the link bandwidth
information on the link table (as shown in Table II). Switches
locally detect the link bandwidth according to physical-/link-
layer information. Once the link bandwidth changes (or link
down), the information will be embedded into LS messages
and reported to the master. After receiving the LS messages,
the master delivers the LS message to all the affected switches
(calculated from the base topology).

Primus master doesn’t calculate WCMP weights them-
selves, but each switch performs these calculations locally.
This approach reduces the computational burden on the master.
Similar to [25], the weights can be calculated by the max-flow
min-cut algorithms for any source-destination pair. As shown
in Fig.3(a), assume that each ToR switch in pod 1 has
16 network flows sending data at the same speed to switches
in pod 2 (i.e., 1.1→1.101, 1.2→1.102, . . . , 1.100→1.200).
In this condition, WCMP will distribute the network flows
evenly among network links. Taking switch 1.1 for example,
there will be 8 flows going through link 1.1→2.1 and the
other 8 flows go through 1.1→2.2. Once the link failure
breaks the network symmetry, WCMP will update link
weights and redistribute the network traffic among these
links. As shown in Fig.3(b), the link between switch 2.1 and
3.1 has broken, which causes bandwidth capacity imbalance
between switch 2.1’s uplink and 2.2’s uplink (total uplink
bandwidth ratio between Agg switch 2.1 and 2.2 is 3:4).
Our dynamic WCMP can perceive the bandwidth capacity
imbalance and calculate the WCMP weights, e.g., 3

7 of
network flows from ToR switch 1.1 go through link 1.1→2.1,
and the others go through link 1.1→2.2. The link weights can
be easily calculated by the switches using the max-flow min-
cut algorithm base on the global network topology and the link

table. After the weights have been calculated, Primus injects
the path weights into the routing table, which maximizes the
link utilization.

E. Other Design Details

Controlling routing flaps. Primus adopts per-local-link
timer in each switch to monitor each switch’s local LS
changes. The timer does not apply to the first state change
of each link, but throttles updating subsequent continuous
changes11 to the master. As such, Primus reacts fast on normal
LS changes while having routing flaps well controlled. In case
of buggy switches, master can also throttle disseminating
continuously changing LSes by monitoring LSes itself. Note
that such timer incurs very small overhead, which can be easily
implemented by adding a timestamp for each local link in the
link table, indicating the time of its last state change.

Routing initialization/reboot. We preconfigure the base
DCN topology, the expected position in the topology, and
all the masters’ static addresses to each switch.12 Based on
the configuration, switches can generate their base link and
path table. When a switch initializes or reboots from crash,
it will build main channel with all masters, reporting its base
information, and finding out the current lead master (also
masters can discover topology wiring error from the position
information reported by switches). Meanwhile, it finds out
the highest LS event ID of all its local links from all the
masters, and then checks all local links’ states and reports all
current states using highest LS event ID++, to ensure that the
whole network view its latest link-states. Similarly, masters
are also pre-configured with the base DCN topology and all
other masters’ static addresses. When a master initializes or
reboots from the crash, it first finds out (or reelect) the lead,
and starts listening/processing switches’ LS messages.

Multi-link failures and switch failures. Failures of
multiple links are processed as multiple independent LS
events, using the same methods described before. A switch
is detected as dead if all masters cannot reach it (even with
redundancy schemes). Then the master takes it as all its data-
plane links are down and notifies other switches to update
routes accordingly.

Interacting with external routes. Primus still uses BGP
to interact with external Internet routers. Specifically, border
switches in DCN (e.g., Core switches) both run Primus and
BGP routing instances, but only enable BGP on outside ports.
Border switches will disseminate BGP routes learned from
outside to each internal switch, notifying which address they
can reach. As such, when having traffic going outside, a switch
can route the traffic first to the border using the intra-DCN
routes calculated by Primus, and then to the outside.

Routing in control-plane. Since the control-plane network
is relatively small compared to the data-plane and our
redundancy scheme helps to handle control-plane failures fast
at low-cost, we simply use existing distributed protocols (e.g.,
OSPF [48]) for routing in the control-plane network.

11A subsequent link-state change which happens after the timer length is
considered as the first state change again for this link.

12If the base topology changes, e.g., due to scale upgrade, we will
reconfigure each switch.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: FAST, SCALABLE AND ROBUST CENTRALIZED ROUTING FOR DATA CENTER NETWORKS 2631

Base topology update for Primus. Primus simplifies the
routing calculation into a table-lookup manner. When base
topology changes (e.g., adding new pods), we have to update
the base link and path table in each switch. We use the way
similar to the routing initialization discussed before to update
base topology in each switch. Specifically, after the topology
has been physically changed, the lead master will notify each
switch the new way of how to generate the link/path table
according to each own expected position in the new topology.
Note that the master does not send the actual tables to them
for saving network bandwidth, but only the rule to generate
the tables. During this period, the whole network’s routing is
stopped. We have evaluated the time cost of topology update
with an experiment results shown in §IX-C, which is about
dozens of seconds in a large topology.

Since base topology change is a low-frequency event, for
simplicity, we choose the initialization-style topology update
because it does not cost much time. We note that there may
exist incremental and faster way such as to insert or modify
entries in the existing tables. How to further shorten the
downtime during base topology update is left for our future
work.

IV. DISCUSSIONS

Master state loss. Since we use stateless master to achieve
fast routing reaction upon complex failures, it may lose global
LSes (although not likely). It may temporarily affect some
centralized control/management functionalities (such as the
routing failure localization introduced before in §III-D.1).
However, the master will eventually get the correct latest states
and restore these functionalities, after running correctly for a
while. These control/management functionalities are relatively
less time sensitive, so we choose to decouple them with a
normal network routing reaction to reduce overhead. Note
that some centralized control/management functionalities will
not be affected by master state loss. For example, for the
WCMP feature we build on Primus, it is rarely affected by
master state loss since the master only conducts stateless
LS forwarding and each switch independently calculates the
latest WCMP. For such advanced routing control which works
on the data-plane, since each switch maintains the path
and link table locally, all the things that switches need to
do is to change its local tables according to certain rules.
Normal routing convergence will not be affected by master
state loss as described in §III-C. If considering advanced
routing managements such as global failure localization,
upon the lead master fails, the total recovery of accurate
failure localization needs to sync LS states among (backup)
masters, which can be several seconds (as shown in Fig. 7).
However, such control plane management functionalities can
be asynchronous, which does not delay the fast data-plane
recovery.

Routing correctness. We preinstall all the shortest paths
into switches, and only disable/enable preinstalled paths upon
LS changes. As such, Primus will only use those (correct)
shortest paths, without worrying about routing loops. Routing
may be unreachable when only non-shortest paths exist

physically (e.g., bounce back to upper-layer switches), but
DCNs already have plenty of shortest paths to tolerate network
failures. Since there is only one generator, i.e., reporter switch,
for a certain LS (masters and other switches are only for
forwarding), routing is eventually consistent in the whole
network.

Why not use merged routes? Once a link’s state changes,
a switch cannot know whether a route entry is still working
or not if only using a merged route instead of monitoring the
status of all the links along that route. For example, in Fig. 1,
if upward link 2.1→3.1 fails, switch 1.1 has no idea about
whether its next-hop 2.1 is still valid or not, since 2.1’s other
three upward links (to 3.2/3.3/3.4) may have already failed.
As such, it may require master calculation based on history
states, hurting performance and bringing consistency issue.

Why not centralized table-lookup? As introduced in §III-
B, each switch needs a link table and a path table for updating
routes. These two tables are different for each switch which are
calculated based on location. As such, putting all the tables
in the master will consume too much memory. Taking the
topology in Fig. 1 as an example, the total memory cost
of all the tables in all the switches is more than 30GB.
Moreover, if routing calculation is done on the master, it raises
performance and consistency issues in case of control-plane
failure.

Traffic incast/outcast to/from the master? There are
two conditions possibly generating incast [49] traffic to the
master, but neither of them will cause performance issues:
1) Multiple switches simultaneously report local LS changes
to the master. However, the number of concurrent LS changes
is typically very small (e.g., hundreds per day [50]), which
incurs very low volume of traffic for LS reporting. 2) Multiple
switches simultaneously reply acknowledgments to the master
when receiving LSes. However, taking the large topology
in Fig. 1 as an example, even if all the switches send
acknowledgments simultaneously, the whole traffic volume is
less than 700KB (64B per acknowledgment), which is far
below modern DCN switches’ buffer capacity (e.g., 9MB for
Broadcom Trident-II chip [51]) and unlikely causes packet
drops. Moreover, switches can add some random delay before
sending acknowledgments, and such designed delay is only
for the acknowledgment which does not increase the routing
reaction time. For outcast traffic, masters do need to send a lot
of LSes to a bunch of affected switches. However, this does
not take much time, which can be done within 10s of ms even
for ten thousand of switches (experiments in §VI-B).

Why a unique lead master to deliver LSes to all affected
switches. A unique lead master simplifies the design and
improves the efficiency. It is indeed possible to use multiple
masters with each for different part of the switches according
to some predefined job division. However, if multiple masters
are used, any master (or any related components) failure may
cause the failure of delivering LSes to some switches. This
increases the failure possibility. Moreover, upon a master
failure, it needs some renegotiation between other masters to
redeliver the LSes for the failed one, which incurs consistency
issue and delay. Primus uses a unique lead master, but employs
a redundancy mechanism to avoid single point of failure.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

2632 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Choice between in-band and out-of-band control-plane.
Although we choose out-of-band way, in-band control is
indeed possible for Primus. In-band control for centralized
routing is a classical problem formerly originated from SDN.
In the Internet scenario, there are three major challenges it is
difficult to solve, i.e., 1) routing bootstrapping, 2) data-plane
failures affecting control-plane availability or correctness,
3) data-plane traffic affecting control-plane performance.
However, all these problems may be able to be addressed by
Primus in the DCN environment.

Particularly, for problem 1) and 2), each switch is pre-
installed with base tables and routing entries (as introduced
in “routing initialization” in Sec. III-E). As such, switches
can also function properly even if they are totally or partially
disconnected to masters during bootstrapping or data-plane
failures. The LS redundancy schemes as well as the fact that
the reporter will retransmit the LS until succeed can help
switches finally get the latest LS through data-plane (if not
fully partitioned). For problem 3), we can reserve dedicated
hardware priority queues for control traffic in switches, such
that the control is not delayed by the huge amount of data-
plane traffic.

We choose the out-of-band way due to its simplicity in
practice. For example, when building a large-scale DCN, it is
easy to verify the topology connection and switch wiring using
a dedicated control-plane network.

Primus for other topologies. Primus has certain require-
ments for the topology. 1) The topology must be or able to be
abstracted into a symmetric structure. 2) Routing variations in
this topology can be abstracted as several fixed patterns. Next,
we will introduce how Primus can be adapted in other existing
popular DCN topologies.

1) Primus for VL2. VL2 [2] is a scalable and reliable
network architecture that designed for data centers, which
provides a richly connected backbone, improving the ability
of fault tolerance. Similar to fat-tree topology, VL2 is a
three tier hierarchical model that comprises a core layer (also
called intermediate layer in [2]), aggregation layer and access
layer. If the links between core switches and the aggregation
switches build a complete bipartite graph (i.e., interconnected
in a full-mesh), which provides better robustness than fat tree
topology. ToR switches are in the lowest level, interconnect
the underlay racks to the aggregation switches.

We can easily apply Primus to VL2 network architecture to
improve the L3 routing performance and only require a minor
change in affected paths calculation (§III-B). Assuming that
there are n Core switches and p pods. Each pod contains k
ToR switches and s Agg switches. In VL2, s×p Agg switches
and n Core switches interconnect in a full-mesh, also the k
ToR switches and s Agg switch in the same pod. Similar to
the fat tree topology, from a switch’s point of view, we can
summarize the links as four types:
• Type 1. For upward link from ToR to Agg, it will affect

n×(s×p−1)×k path entries in total, i.e., all the n paths
stemmed from this Agg to all the k × p destinations.

• Type 2. For upward link from Agg to Core, it will affect
(s× p− 1)× k path entries in total, i.e., the single path
through this link to all the k × p destinations.

• Type 3. For downward link from Core to Agg, it will
affect s× (p−1)×k2 path entries in total, i.e., the single
path through this link to all the k destinations in this pod.

• Type 4. For downward link from Agg to ToR, it will affect
n × (p × s − 1) × k path entries in total, i.e., the paths
through this Agg to the single destination of the ToR.

VL2 can benefit from Primus but doesn’t need to alter any
components, e.g., its address resolution, packet forwarding
mechanism, directory system, etc..

2) Primus for BCube. Unlike the switch-centric network
structures (e.g., fat-tree, VL2, etc.), BCube [52] is a kind
of server-centric network structure, which is designed for
shipping-container based modular data center (MDC). BCube
comprises two types of network devices: commodity switches
and servers that have multiple ports. BCube is a recursive
network structure, and each server connects to multiple
switches that belong to different levels. There are no direct
network links between switches as which only connect to
servers. BCube0, which is simply composed of n servers
and an n-port switch, is the minimum unit of BCube
network structure. And n BCube0s compose a BCube1. More
generally, a BCubek is constructed from n BCubek−1s and
nk n-port switches.

BCube runs a protocol suite that specially developed for
it, e.g., a source routing protocol (i.e., BCube Source routing,
BSR) for routing, a packet forwarding engine as an auxiliary
tool for packet processing. In BCube topology, there may
be multiple available parallel routing paths. When a new
flow comes, BSR firstly selects a default routing path and
sends a probe packet to check whether this path is available.
Meanwhile, the source server will send probe packets over
multiple parallel paths to find the best path (e.g., maximum
bandwidth, minimum delay, etc.). Once the best path is
selected, the source server switches the flow to the path.
The mechanism of BSR will hurt the network transmission
performance once the network failure occurs as information is
not timely updated because BSR should send a probe packet
to capture the information of link/server failure.

Primus can help BCube make rapid responses to network
condition change (e.g., link up/down, link bandwidth change,
etc.), as a plug-in unit. The reason for the low efficiency
of BSR in BCube are as follows: 1) BSR will calculate a
routing path set for every flow using its algorithm and select
a default path from the path set. Note that BSR is unaware of
the availability of the selected path. It requires BSR sending a
probe packet to confirm the validity of this routing path. If it is
unavailable, the time and bandwidth resources will be wasted
during this period, which decreases the network transmission
effectiveness. 2) BSR uses the information that probe packet
return to choose the best path from the path set, i.e., BSR
will send a probe packet for each path in the path set, the
intermediate node or destination node will return a response
message that carry some useful information (e.g., bandwidth,
delay, etc.). BSR determines which routing path is the best
using different metrics, then the BSR switch the default path
to the best. 3) BSR depends on the response of the probe
packet sensing network link failure. Although BSR will send
probe packet to perceived network failures or dynamic network

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: FAST, SCALABLE AND ROBUST CENTRALIZED ROUTING FOR DATA CENTER NETWORKS 2633

conditions periodically (e.g., every 10 seconds), it still has a
strong lag in the fast changing network condition.

We can use Primus to speed up the routing reaction of
BSR. Primus completes work such as detecting accessibility
in advance, thus avoiding the drawbacks of using probe
packets. It can provide a global network perspective for
BSR, which can bring the following benefits: 1) BSR can
quickly select a best routing path based on the global network
perspective, avoiding sending probe packets for each routing
path in the path set, which saves time and network bandwidth.
2) Primus can help BSR achieves rapid reaction to changes
in network conditions (e.g., link up/down) because Primus
keeps very short reaction time when network conditions
changed.

V. IMPLEMENTATION AND TESTBED SETUP

A. Primus Implementation

We have a complete implementation of Primus with
3128 lines of C++ code (available at [18]), based on Linux-
machine masters/switches and Ruijie white-box switches [19]
with SONiC [53] switch OS installed.13 Primus works
as a daemon process on each switch and master. The
switch implementation mainly consists of three components,
i.e., link monitor, link-state updater/receiver, and routing
calculator/updater. Link monitor monitors a switch’s NIC
(switch ports) status through Linux epoll events.14 Link-
state updater/receiver reports/receives/forwards LSes and other
control messages through long-lived-TCP-based main channel
and UDP-based redundancies. Each LS is formatted into a
52B data structure. Routing calculator/updater uses the table
structures described before to calculate routing, and updates
the Linux kernel routing table through rtnetlink. Master
communicates with multiple switches through multiple TCP
threads based on epoll event loop. The election protocol
between masters is based on an existing implementation of
Raft [54]. Although we have not used high-performance
networking stacks (e.g., DPDK [55]) for now, the current
Primus implementation offers performance good enough even
for a very large network (results in §VI). Integrating Primus
implementation with high-performance networking stacks will
be our future work.

B. Testbed Setup and Methods Compared

We build a prototype testbed consisting of 11 Linux-
virtual-machine based switches (Ubuntu 16.04.4,
kernel 4.12) and 3 B6510-48VS8CQ Ruijie switches
(SONiC.201803.release.0, Kernel 3.16.0-5). The prototype
data-plane topology is shown in the black and bold part of
Fig. 1 (switch 1.1/2.1/2.2 are physical Ruijie switches). Note
that we cannot virtualize these physical switches into more
logical ones because currently SONiC does not support VRF
(Virtual Routing and Forwarding) [56]. All the VM switches
are connected through virtual switches with 1Gbps links,

13From the OS user’s point of view, SONiC is almost the same as Linux
except for some switch-specific network configurations. Our code can run
both on Linux and SONiC.

14Linux can get those events from underlying detection schemes (e.g., [44]).

hosted on 4 Dell R720XD physical servers (Intel Xeon CPU
E5-2620, 96GB memory). Ruijie switches are connected
through a 1Gbps link between each other and between
physical servers. Each VM uses two dedicated CPU cores
and 1GB memory. Four extra VMs (same configuration) are
used as the Primus (lead/backup) masters, connected with
switches with an out-of-band 1Gbps control-plane switch
(one control-plane access link per master). We use a server
(Dell R720XD) to act as the out-of-band control plane and
deploy the masters (in VMs) on that server. All switches and
masters are connected through a 1Gbps 24-port control-plane
switch. Due to the simple small-scale control-plane network,
we pre-configure static routing entries for the control-plane
routing.

We implement Firepath in our testbed based on the available
information in its paper [9]. Since Firepath has neither
published enough details nor provided its implementation,
we choose Yen’s k-SPF algorithm [14] for its routing
calculation, and Raft [17], [54] for its LSDB synchronization
and master reelection, which are the most classic and widely
used ones in practice. We also compare Primus with BGP in
our testbed, using the BGP implementation of Quagga Routing
Software Suite v1.2.4 [57]. The BGP routing advertisement
timer and connection recovery timer are set to be 1s and 4s
in all the rest experiments, respectively, which is based on
private conversations with operators in charge of one of the
largest production DCNs in China. We rely on Quagga’s Linux
interface monitoring scheme to detect local link failure in BGP.
We do not compare with link-state protocols (e.g., OSPF [48])
as they are not used in current large scale DCNs, because of
high overhead to maintain and broadcast the whole network’s
link-states among all switches.

In Primus, three UDP redundancies are generated for each
LS report and delivery. The heartbeat period and reelection
timeout in our Raft among masters are 5s and 30s, respectively.
Since Firepath has to sync LSDB when processing each LS,
we set those two Raft timeouts to shorter values of 1s and
5s in Firepath, respectively. We have tried shorter timers,
however, they caused Raft leader oscillation. 1s and 5s are
the shortest values which are stable in our testbed. The base
RTT in our testbed is less than 1ms on average and ∼10ms
in tail, and the TCP minRTO is set to 60ms. Unless explicitly
specified, all the rest experiments use above testbed and
settings.

VI. EVALUATION ON ROUTING PROCESSING

First, we evaluate the basic performance of routing
processing: 1) We test the processing time and memory
consumption on a real SONiC white-box switch when dealing
with Primus routing in a very large network topology (§VI-
A). 2) We test the overall routing processing time (including
master and switch) under various network scales (§VI-B).
For all experiments, we compare Primus with Firepath under
the same topology scale (and same hardwares). We do not
compare with BGP in this part since it is difficult to accurately
emulate BGP’s performance under large scale with only a few
equipments.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

2634 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 4. Processing time in a switch, in a network having 10K ToRs, 400
Aggs and 16 Cores as shown in Fig. 1.

Fig. 5. Overall routing processing time as the network scale grows.

TABLE III
MEMORY CONSUMED IN A SWITCH, IN A NETWORK HAVING
10K TORS, 400 AGGS AND 16 CORES AS SHOWN IN FIG. 1

A. Switch Processing

Setup: We start a Primus switch process on a Ruijie physical
switch, and install the link table (∼40K entries) and path table
(∼160K entries) for the whole topology shown in Fig. 1 (10K
ToRs, 400 Aggs and 16 Cores). We locally generate a random
LS change to this switch for 10K times, and measure the
routing processing time (from receiving the LS to updating
SONiC kernel routing table entries).

Results: Fig. 4 shows the CDF of the switch’s whole
processing time in Primus (“Switch-proc”) and in Firepath
(“Firepath”), and the time for updating switch kernel routes
in Primus (“Switch-rt”), for each LS change. Our smart table-
lookup makes the whole processing time down to 11us in 50th
percentile and 110us even in 99th percentile. The time for
updating kernel routes in the physical switch is about 41us
in 50th percentile and 92us in 99th percentile. However, due
to high computation complexity in such large DCN topology
(Fig. 1), it always takes more than 3s for routing calculation
in Firepath,15 which is ∼104-105 higher than Primus. Note
that in Fig. 4 curve “Switch-rt” is higher than curve “Switch-
proc” because not every LS change triggers a switch kernel
route change. Particularly, due to our routing merge schemes
(§III-B), Primus switch only changes a kernel route entry when
all the paths of a next routing hop fail or a next routing hop has
one path back after all its paths fail. Table III shows that the
link table and path table only consume 1.33MB and 7.68MB
memory, respectively, which can even fit into the caches of
modern CPUs.

15We note that in Firepath some LS changes (e.g., upward links) can use
data-plane routing recovery such as ECMP, and do not need to wait for control-
plane routing calculation. §VII shows actual routing recovery time and this
part only focuses on the routing calculation speed.

B. Overall Routing Processing

Setup: We connect two physical Dell servers directly
together through two 25Gbps NIC ports. We run one Primus
master process on one server machine, and multiple Primus
switch processes on the other server machine to emulate
multiple physical switches. The master process uses 9 sending
threads and 2 receiving threads with each thread binding to
a dedicated CPU core (hyper-threading disabled). Both the
Primus master and switches are installed with the complete
data structures for the whole topology shown in Fig. 1 (10K
ToRs, 400 Aggs and 16 Cores). We vary the number of
switch processes from 200 to 10K with step length of 200.
At each step, one switch reports a random LS change to the
master, and waits the master to deliver LS updates/receive
acknowledgments/reply the response, for 10K times. For each
LS, the master will deliver it to all the switch processes thus
to evaluate the overhead of socket sending/receiving. Since
all switch processes run on the same physical machine, only
one switch process will actually perform the table-lookup
calculation and change the Linux kernel routes. All other
switch processes only directly replies an acknowledgment
to the master after receiving an LS update. We evaluate:
1) the overall processing time (from the LS generated at the
reporter switch to the master’s response returned to the reporter
switch), 2) the master processing time (from the LS received at
the master until the master finishes sending all the LS updates
through socket API), and 3) switch processing time (from the
LS update received at the switch which calculates and changes
routes until it finishes sending the acknowledgments to the
master).

Results: Fig. 5 shows the average time of Primus’s
overall processing (“Total-xxx”), Primus’s master process-
ing (“Master-proc”), Primus’s switch processing (“Switch-
proc”), and Firepath’s overall processing, as the number
of switch processes grows. Each point is the average of
10K runs and Primus’s master/switch processing time is
evaluated when generating zero UDP redundancies. As the
results show, even when controlling 10K switch processes,
Primus’ total routing processing time is only ∼22ms
when we generate zero UDP redundancies (“Total-0UDP”),
and only ∼26ms/29ms/32ms when generating 1/2/3 UDP
redundancies16 (“Total-1UDP/2UDP/3UDP”) for each LS
report/delivery, respectively. Compared to Firepath’s results
under 10K switches (which is close to the 4s time reported
in their paper [9]), Primus’s routing processing time is up to
∼148.3x (0UDP) and ∼98.8x (3UDP) faster. In Primus, for
10K switches, the master takes only about 5ms with most time
spent in socket send()/recv() (detailed breakdown not
in the figure), and the average processing time of the switch
is only about 1ms. Note that there is a big gap between the
overall processing time and the master/switch processing time.
The gap is due to the processing time of all the 10K switch
processes running on the same physical machine. We cannot
accurately measure how much they contribute to the overall

16In this speed testing experiment, we directly generate all the UDP
redundancies to the one master process and it forwards UDP redundancies
to switches, to emulate multiple backup masters.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: FAST, SCALABLE AND ROBUST CENTRALIZED ROUTING FOR DATA CENTER NETWORKS 2635

Fig. 6. Application’s job completion time under random data-/control-plane
failures (failure pattern derived from real measurements).

routing processing time since those processes run in parallel
and independently.

VII. EVALUATION ON ROUTING CONVERGENCE

In this section, we evaluate Primus’s performance on routing
convergence, which includes two parts: 1) Macro-benchmarks
show how Primus’s fast routing convergence can benefit
the upper-layer applications (§VII-A). 2) Micro-benchmarks
examine in detail how long Primus reacts to network changes
and how well Primus handles control-plane failures (§VII-B).

We install the whole large topology of Fig. 1 both
in Primus’s and Firepath’s masters and switches, as such,
although our testbed only contains 14 switches and 4 masters,
the routing convergence time will be more close to the reality
in the large topology. Since Firepath’s routing calculation
algorithm consumes significant amount of time under such
large topology, we also evaluate a version of Firepath that only
calculates route for our testbed’s 14-switch topology (denoted
as “Firepath-noCalc”). BGP runs directly on the 14-switch
testbed and we do not manipulate its topology database scale.

A. Macro-Benchmark

Setup: We inject a partition-aggregate application to our
testbed. Specifically, we start a server VM (under ToR 1.1) and
three client VMs (under ToR 1.9801). For every second, the
server round-robinly sends a small TCP single request to each
of 3 clients and waits for a 2KB response from each client,
which is a typical traffic pattern often existing in front-end data
centers [7]. Meanwhile, we inject random link flapping failures
to the network. Specifically, flapping failures (down and then
up, each down time < 30ms) will randomly appear on each
link (including control-plane links in Primus and Firepath).
The time interval between flaps on each link obeys a log-
normal distribution according to measurement results in [50],
with the average interval being 100s. We measure the job
completion time, which means all the 3 responses are received
by the sender. The experiment is conducted 1000s.

Results: Fig. 6 shows the CDF of job completion time
(JCT) in Primus, BGP and Firepath. Since Primus has much
faster routing reaction time, the application is almost not
affected by the link flaps. The 99th and 99.5th percentile
JCT are only ∼9.4ms and ∼10.5ms, respectively, and the
worst jobs are completed within ∼67ms (encounters one TCP
RTO). In Firepath, the 99th and 99.5th percentile JCT are
∼1.02s and ∼1.05s, respectively, and the worst case is ∼4.1s,
which is ∼100x slower than Primus. This is due to the
long connectivity loss caused by the slow routing reaction
(slow routing calculation and LSDB sync between masters).

Fig. 7. Routing recovery time upon network changes. Primus’
throughput never drops to zero (only to ∼10Mbps in one time bin) and
recovers immediately, but others experience obvious recovery time except
Firepath-noCalc. “-ctrl” denotes reporter switch’s control-plane link failure.
“-2slave” and “-3slave” denote 2 or 3 backup controllers’ control-plane link
failure. “-lead” denotes lead master failure.

Even when Firepath has little routing calculation overhead
(“Firepath-noCalc”), the 99.5th percentile JCT is still above 1s
due to its control-plane overhead (more details in §VII-B.1).
In BGP, the JCT is ∼11.9s in 99th percentile and ∼12.9s in
99.5th percentile, which is ∼1226x higher than Primus.

B. Micro-Benchmark

1) Routing Reaction Time Upon Network Changes: Since
there is no precise global clock among switches in our testbed,
we evaluate the accurate routing reaction time by monitoring
data transmission throughput. Specifically, we inject a UDP
flow sending infinite data at average rate 400Mbps from
a host below switch 1.9801 to a host below switch 1.1,
going through path 1.9801→2.393→3.1→2.1→1.1. During
data transmission, at moment 1, we tear down link 2.1↔1.1.
We measure the real-time receiving throughput at the receiver
in the time bin of 30ms, to see how long it takes for the
routing protocol to react. We also inject various control-plane
failures simultaneously with link 2.1↔1.1 failure. Specifically,
we generate transient failure to switch 2.1’s control-plane link
(“-ctrl”), 2 or 3 backup controllers’ control-plane links (“-
2slave” and “-3slave”), and lead master (“-lead”).

Fig. 7 shows the throughput dynamics of the UDP flow.
After link 2.1↔1.1 down, it takes about 5.4s for Firepath to
recover the routing connectivity. This is mainly due to its slow
k-SPF algorithm (since Firepath-noCalc is almost not affected
by this single data-plane failure). The throughput in Primus is
similar to Firepath-noCalc, which never drops to zero (only
one time bin drops to ∼10Mbps) in the time bin of 30ms.
Note that counting UDP throughput in such small time bins
is not so accurate which may be affected by various factors
such as OS scheduling, but the levels are valid.

When we inject simultaneous control-plane failures,
Firepath takes more time to recover the routing connectivity.
Particularly, Firepath-ctrl takes about 100ms more, since it
encounters a TCP RTO because the reporting LS is dropped
by switch 2.1’s control-plane link failure. Firepath-2slave
and Firepath-3slave takes ∼2-3.5s more, because backup
controllers’ link failure blocks LSDB synchronization, and
lead master takes one or more heartbeat timeouts to finally
replicate the LSDB before it can disseminate the LS change.
For lead failure, it takes even more time (about 5s) for lead

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

2636 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 8. Snapshots of the routing fault localization tool.

Fig. 9. Fraction of LSes received from redundancies and the app’s tail job
completion time, as the control-plane failures become severer.

reelection in Firepath. However, Primus will tolerate all these
kinds of control-plane failures, keeping routing recovery time
within ms level benefited from its redundancy schemes. Since
the results are similar for Primus under all conditions, we do
not draw them on the figure and use “Primus (all cnd)” to
represent all these cases for simplicity.

2) Anatomy of Primus’s Redundancy Efficiency: We
conduct the same experiment as in §VII-A, but increase the
lasting time for each control-plane link failure to evaluate the
efficiency of Primus’s LS redundancy schemes. Fig. 9 shows
the fraction of LSes first received from UDP redundancies
(among all the LSes received from TCP main channels and
UDP redundancies) and the application’s 99th and 99.5th

percentile job completion time (JCT), as the control-plane
failures lasting time grows from 0.5s to 4s, respectively.
Results show that the fraction of LSes got from UDP
redundancies (before TCP main channels) grows from ∼0.4%
to ∼2.4%, as the control-plane network failures become
severer. This helps Primus to maintain the 99th and 99.5th

percentile JCT under 10ms and 70ms when control-plane
link failure lasts for 2s, which are significantly better than
Firepath’s results even when its failures only last for <30ms.
Even when the failure lasting time grows to 4s in such small
network, Primus keeps the 99th and 99.5th percentile JCT
under 2.2s and 3.2s.

VIII. EVALUATION ON ROUTING CONTROLLABILITY

In this section, we build the two example applications
described before to show the benefits of Primus’s fine-grained
control and centralized view to the whole network’s routing.

A. Routing Failure Visualization

First, we build a simple network management tool to help
operators to visualize routing problems. Specifically, we build

Fig. 10. Dynamic WCMP.

an HTML5 web page using Canvas element [58] to visualize
the current status of the whole network’s link-state. The
current link-state is fetched from the Primus master node
using JavaScript in a real-time manner, with a periodical
fetching interval of 3 seconds. Fig. 8 shows the snapshot of
our visualized pages for three example cases, i.e., normal, link
2.1↔3.2 failure, and switch 2.2 failure, respectively (red color
refers to failure).

All path failure information has already been collected.
Compared to other tools, failure localization tools built on
primus only need to visualize this information.

B. Dynamic WCMP

Next, leveraging the master’s centralized view, we extend
our Primus routing with WCMP, which dynamically adjusts
each path’s ECMP weight based on its current bandwidth
capacity. In this experiment, we change the topology of our
testbed a little, enabling ToR switch 1.2 and 1.9802, and
removing Core switch 3.3, 3.4, 3.7, 3.8, thus to form a full-
bisection bandwidth network with no over subscription. ToR
1.1 and 1.2 both have two clients below them, respectively
(similarly, ToR 1.9801 and 1.9802 each have two servers below
them). We inject 25 long TCP flows sending data from each
client to each server (100 flows in total between the four pairs
of client/server). During data transmission, we tear down link
3.1↔2.1 to evaluate the performance of WCMP.

Fig. 10(a) shows the throughput of each flow (in descending
order) after routing converged after link failures. The
throughput is normalized to the fair-share throughput of each
flow when no failures happen. Since BGP has no dynamic
WCMP, about half of the flows going through switch 2.1 share
only one upward link after link 3.1↔2.1 fails, so they only

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: FAST, SCALABLE AND ROBUST CENTRALIZED ROUTING FOR DATA CENTER NETWORKS 2637

Fig. 11. Probability of successfully collecting an LS and delivering it to all
the affected switches, under different network failure distribution.

get about half of the throughput. However, in Primus, after
the link fails, the master recalculates the path weights and set
switch 1.1 and 1.2 to spread flows to the second-layer Agg
switches with weights of 1:2. As such, all the flows fairly
share the three working upward links of switch 2.1 and 2.2,
so each flow gets about 3/4 throughput. Fig. 10(b) shows the
dynamics of the unfairness between flows before/during/after
the link failure event. The unfairness is defined as the ratio of
the standard deviation to the average of all flows’ throughput
(measured in 0.5s time bin). Results show that Primus can
quickly calculate the right WCMP weights and route flows
accordingly after link failure, so the unfairness is much lower
than in BGP, whose paths still use the unbalanced ECMP
weights before. Note that the unfairness both in Primus
and BGP soars up temporarily after the failure because the
throughput of some flows traversing on the failed link drops
to zero before the routing recalculation finishes. The unfairness
after failure is higher than normal state even we spread flows
using WCMP, because the same number of flows share a
less number of links, so the competition is severer and TCP
throughput is not as stable as before.

IX. EVALUATION ON PRIMUS’ OVERHEAD

In this section, we evaluate the efficiency of the LS
redundancy scheme based on the theoretical model derived
before through simulation, and evaluate the efficiency of
topology update scheme through testbed experiments. The
overheads of UDP mechanism and dynamic WCMP are
evaluated. All experiment settings are the same as in
Sec. VI-B. Time bin in Sec. IX-D is 30ms.

A. Effectiveness of the LS Redundancy

We evaluate the robustness of the LS redundancy system
with 0/1/2/3 UDP backup channel(s), respectively. We assume
that each link/switch has a fixed failure probability, whose
value randomly distributes between 0.001% and 1%.17 We
evaluate two failure distributions, i.e., uniform random and
normal random.

Fig. 11 shows the results of running 10K times (in CDF)
in a 10K-switch topology as shown in Fig. 1, under uniform
random and normal random distribution, respectively. When
using 3-UDP backup channels, the mean success probabilities
are 99.668% and 99.667%, which means the there is only
about 0.333% possibility that a reporter switch has to
retransmit the LS upon it detects a local link change.

17The actual failure probability would be lower in reality [50].

TABLE IV
BANDWIDTH USAGE OF LS REDUNDANCY

Fig. 12. Time to update base topology for networks with different sizes.

Fig. 13. CPU usage of Dynamic WCMP.

B. Bandwidth Usage of LS Redundancy

Here, we evaluate the traffic comes from the LS redundancy
system with 0/1/2/3 UDP backup channel(s), respectively.
We assume that the failure probability of link/switch follows
a uniform random distribution, which is valued from 0.001%
and 1%.(i.e.,up to 1000 links/switches fail per day in 10K+
topology). Table. IV shows the results. Even with 3UDP
redundant channels, the average new traffic in the network
is only 101.03KB per second.

C. Base Topology Update

We evaluate the time to initialize (update) the base topology
in this section. Specifically, starting from the network that only
contains 1000 switches (10 pods), we gradually add switches
to the complete topology with 1000 switches (100 pods).
We measure the time that it takes to update the base topology
for all the switches in the network. Fig. 12 shows the results.
It only takes about 10s to 22s to update the base topology for
the whole network.

D. CPU Usage of Dynamic WCMP

We let the leader periodically send link changes to a switch
running dynamic WCMP and measure the real-time CPU
utilization. Fig. 13 shows the results. The results show that
when running WCMP, the highest instantaneous CPU usage
is 113.7%, which is ∼16.9x as not using WCMP.

X. CONCLUSION

We presented Primus, a centralized DCN routing protocol
and system. Leveraging the regular DCN topologies, Primus
simplifies the routing into centralized link-state management
and simple table-lookup routing calculation. Moreover,
through low-cost control-plane fault-tolerant schemes, Primus
can keep very good performance even under complex
control-plane failures. We made Primus’s implementation

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

2638 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

publicly available. Testbed experiments show that Primus can
significantly improve the routing convergence time, being
∼1200x and ∼100x faster than BGP and the state-of-the-art
centralized routing solution Firepath, respectively. Moreover,
Primus also keeps high routing controllability/manageability
which can enable various advanced routing scenarios.

There are still some unresolved questions in this paper. For
example, we discuss Primus for other topologies such as VL2
and BCube, but how can these topologies use the information
collected by Primus to realize different routing policies such
as non-shortest path routing? These are valuable problems that
worth further studying.

REFERENCES

[1] Y. T. Rekhter Li and S. Hares, A Border Gateway Protocol 4 (BGP-4),
document RFC-4271, 2006.

[2] A. Greenberg, J. R. Hamilton, N. Jain, and S. Kandula, “VL2: A scalable
and flexible data center network,” in Proc. SIGCOMM, 2009, pp. 51–62.

[3] G. D. Dutt, BGP in the Data Center. Sebastopol, CA, USA: O’Reilly
Media, 2017.

[4] R. B. da Silva and E. S. Mota, “A survey on approaches to reduce BGP
interdomain routing convergence delay on the internet,” IEEE Commun.
Surveys Tuts., vol. 19, no. 4, pp. 2949–2984, 4th Quart., 2017.

[5] M. Yannuzzi, X. Masip-Bruin, and O. Bonaventure, “Open issues in
interdomain routing: A survey,” IEEE Netw., vol. 19, no. 6, pp. 49–56,
Nov. 2005.

[6] M. Walraed-Sullivan, A. Vahdat, and K. Marzullo, “Aspen trees:
Balancing data center fault tolerance, scalability and cost,” in Proc. 9th
ACM Conf. Emerg. Netw. Experiments Technol., Dec. 2013, pp. 85–96.

[7] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A fault-
tolerant engineered network,” in Proc. NSDI, 2013, pp. 399–412.

[8] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,
“Ensuring connectivity via data plane mechanisms,” in Proc. NSDI,
2013, pp. 113–126.

[9] A. Singh et al., “Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network,” in Proc. ACM Conf.
Special Interest Group Data Commun., Aug. 2015, pp. 183–197.

[10] A. Greenberg et al., “A clean slate 4D approach to network control and
management,” ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 5,
pp. 41–54, Oct. 2005.

[11] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. V. D. Merwe, “Design and implementation of a routing control
platform,” in Proc. NSDI, 2005, pp. 15–28.

[12] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” in Proc. Conf.
Appl., Technol., Architectures, Protocols Comput. Commun., Aug. 2007,
pp. 1–12.

[13] A. D. Ferguson et al., “Orion: Google’s software-defined networking
control plane,” in Proc. 18th USENIX Symp. Networked Syst. Design
Implement. (NSDI), pp. 83–98, 2021.

[14] J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage.
Sci., vol. 17, no. 11, pp. 712–716, Jul. 1971.

[15] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. ACM, vol. 34, no. 3,
pp. 596–615, Jul. 1987.

[16] OSPF Incremental SPF—Cisco. Accessed: Dec. 11, 2019. [Online].
Available: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_
ospf/configuration/15-sy/iro-15-sy-book/iro-incre-spf.pdf

[17] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX ATC, 2014, pp. 305–319.

[18] Primus Code Base. Accessed: Apr. 20, 2020. [Online]. Available:
https://github.com/GuihuaZhou/PrimusCode2.0

[19] Ruijie Bare Metal Switches, B6510-48VS8CQ Switch.
Accessed: Dec. 15, 2019. [Online]. Available: https://www.
ruijienetworks.com/products/switches/bare-metal-switches/b6510-
48vs8cq-switch

[20] G. Zhou et al., “Primus: Fast and robust centralized routing for large-
scale data center networks,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), May 2021, pp. 1–10.

[21] R. N. Mysore et al., “PortLand: A scalable fault-tolerant layer 2 data
center network fabric,” in Proc. SIGCOMM, 2009, pp. 39–50.

[22] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proc. NSDI, 2014, pp. 1–15.

[23] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, 2010, pp. 1–15.

[24] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized zero-queue datacenter network,” in Proc.
SIGCOMM, 2015, pp. 307–318.

[25] J. Zhou et al., “WCMP: Weighted cost multipathing for improved
fairness in data centers,” in Proc. 9th Eur. Conf. Comput. Syst.,
Apr. 2014, pp. 1–14.

[26] N. Gude et al., “NOX: Towards an operating system for networks,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110,
Jul. 2008.

[27] T. Koponen, M. Casado, N. Gude, and J. Stribling, “Distributed control
platform for large-scale production networks,” U.S. Patent 8 830 823,
Sep. 9, 2014.

[28] Open/R: Open Routing for Modern Networks. Accessed: Aug. 23,
2018. [Online]. Available: https://engineering.fb.com/connectivity/open-
r-open-routing-for-modern-networks/

[29] D. Pei et al., “Improving BGP convergence through consistency
assertions,” in Proc. 21st Annu. Joint Conf. IEEE Comput. Commun.
Societies, Jun. 2002, pp. 1–11.

[30] A. Fabrikant, U. Syed, and J. Rexford, “There’s something about MRAI:
Timing diversity can exponentially worsen BGP convergence,” in Proc.
IEEE INFOCOM, Apr. 2011, pp. 2975–2983.

[31] A. Bremler-Barr, Y. Afek, and S. Schwarz, “Improved BGP convergence
via ghost flushing,” in Proc. 22nd Annu. Joint Conf. IEEE Comput.
Commun. Societies (INFOCOM), Mar. 2003, pp. 1–11.

[32] A. Abhashkumar and K. Subramanian, “Running BGP in data centers
at scale,” in Proc. NSDI, 2021, pp. 65–81.

[33] A. T. Atlas Przygienda, A. Sharma, and J. Drake, RIFT Routing in Fat
Trees, document RFC draft-przygienda-rift-05, 2018.

[34] A. Atlas and A. Zinin, Basic Specification for IP Fast Reroute: Loop-
Free Alternates, document RFC 5286, 2008.

[35] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So, Remote Loop-
Free Alternate (LFA) Fast Reroute (FRR), document RFC 7490, 2015.

[36] G. Enyedi, A. Csaszar, A. Atlas, C. Bowers, and A. Gopalan, An
Algorithm for Computing IP/LDP Fast Reroute Using Maximally
Redundant Trees (MRT-FRR), document RFC 7811, 2016.

[37] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in Proc. NSDI, 2019, pp. 161–176.

[38] G. Chen, Y. Zhao, H. Xu, D. Pei, and D. Li, “F2Tree: Rapid failure
recovery for routing in production data center networks,” IEEE/ACM
Trans. Netw., vol. 25, no. 4, pp. 1940–1953, Aug. 2017.

[39] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs, “R-BGP: Staying
connected in a connected world,” in Proc. NSDI, 2007, pp. 1–14.

[40] T. Holterbach, S. Vissicchio, A. Dainotti, and L. Vanbever, “SWIFT:
Predictive fast reroute,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2017, pp. 1–14.

[41] C. Y. Hong, S. Kandula, R. Mahajan, and M. Zhang, “Achieving high
utilization with software-driven WAN,” in Proc. ACM SIGCOMM Conf.
SIGCOMM, Aug. 2013, pp. 1–12.

[42] S. Jain, A. Kumar, S. Mandal, and J. Ong, “B4: Experience with a
globally-deployed software defined WAN,” in Proc. SIGCOMM, 2013,
pp. 3–14.

[43] C.-Y. Hong et al., “B4 and after: Managing hierarchy, partitioning,
and asymmetry for availability and scale in Google’s software-defined
WAN,” in Proc. SIGCOMM, 2018, pp. 1–9.

[44] D. Katz and D. Ward, Bidirectional Forwarding Detection (BFD),
document RFC-5880, 2010.

[45] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM SIGCOMM Conf. Data
Commun., Aug. 2008, pp. 63–74.

[46] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in Proc. ACM SIGCOMM Conf.,
New York, NY, USA: ACM, 2015, pp. 63–74.

[47] C. E. Hopps, Analysis of An Equal-Cost Multi-Path Algorithm, Internet
Engineering Task Force, document RFC 2992, 2000.

[48] J. Moy, OSPF Version 2, document RFC 2328, 1998.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: FAST, SCALABLE AND ROBUST CENTRALIZED ROUTING FOR DATA CENTER NETWORKS 2639

[49] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP incast throughput collapse in datacenter networks,”
in Proc. 1st ACM Workshop Res. Enterprise Netw. New York, NY, USA:
ACM, Aug. 2009, pp. 73–82.

[50] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 350–361, 2011.

[51] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
in Proc. ACM Conf. Special Interest Group Data Commun., Aug. 2015,
pp. 1–14.

[52] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, and Y. Shi, “BCube: A
high performance, server-centric network architecture for modular data
centers,” in Proc. SIGCOMM, 2009, pp. 63–74.

[53] SONiC: Software for Open Networking in the Cloud. Accessed: Oct. 8,
2018. [Online]. Available: https://azure.github.io/SONiC/

[54] QIHOO360’s Implementation of the Raft Consensus Protocol.
Accessed: Apr. 13, 2020. [Online]. Available: https://github.com/
Qihoo360/floyd

[55] DPDK: Data Plane Development Kit. Accessed: Feb. 9, 2019. [Online].
Available: https://www.dpdk.org/

[56] Virtual Route Forwarding Design Guide—Cisco. Accessed: Feb. 20,
2019. [Online]. Available: https://www.cisco.com/c/en/us/td/docs/voice_
ip_comm/cucme/vrf/design/guide/vrfDesignGuide.html

[57] Quagga Routing Suite. Accessed: Mar. 3, 2019. [Online]. Available:
http://www.nongnu.org/quagga/

[58] HTML5 Canvas. Accessed: Dec. 3, 2019. [Online]. Available:
https://www.w3schools.com/html/html5_canvas.asp

Fusheng Lin received the master’s degree from
Hunan University, in 2022. He is currently with
Tencent. His research interests include computer
networking and networked systems.

Hongyu Wang received the B.S. degree from
Guangxi University, China, in 2020. He is currently
pursuing the master’s degree with Hunan University,
China. His research interests include computer
networking.

Guo Chen (Member, IEEE) received the Ph.D.
degree from Tsinghua University in 2016. He was
a Researcher with Microsoft Research Asia
from 2016 to 2018. He is currently a Professor with
Hunan University. His current research interests
include networked systems and with a special focus
on data center networking.

Guihua Zhou received the B.S. degree from
Xiangtan University, China, in 2018, and the M.D.
degree from Hunan University, China, in 2021. He is
currently a Software Engineer with Tencent. His
research interests include data center networking.

Tingting Xu (Student Member, IEEE) received
the B.E. degree from Hunan University, Hunan,
China, in 2019. She is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Technology, Nanjing University, under the
supervision of Prof. Xiaoliang Wang. Her research
interests include programmable networks, data
center networks, and network function virtualization.

Dehui Wei received the B.E. degree (Hons.)
in computer science and technology from Hunan
University, Changsha, China, in 2019. She is
currently pursuing the Ph.D. degree with the
State Key Laboratory of Networking and Switch-
ing Technology, Beijing University of Posts and
Telecommunications (BUPT). Her research interests
include network transmission control and cloud
computing.

Li Chen (Member, IEEE) received the B.E. degree
(Hons.) in electronic and computer engineering with
a minor in mathematics and the M.Phil. degree from
The Hong Kong University of Science and Tech-
nology (HKUST) in 2011 and 2013, respectively.
He is currently with the Zhongguancun Laboratory
working on topics in systems, networking, and
cybersecurity research.

Yuanwei Lu received the joint Ph.D. degree
from the University of Science and Technology of
China and Microsoft Research Asia in 2018. His
research interests include data center networking and
networked systems.

Andrew Qu is a highly experienced Network
System Architect with over 20 years of expertise
in designing and implementing distributed network
systems, high-performance network ASIC, and
hyper-scale data center network architectures. He has
served as the Senior Leader for multiple technology
leading companies like: Cisco, Tencent, Huawei, and
Intel. He is currently the Senior Director of data
center solution architecture.

Hua Shao received the doctor’s degree from
Tsinghua in 2022. He has over 20 years of
experiences in hyperscale infrastructure research and
development. He was with Tencent from 2013 to
2020 and was the Director of the Network
Infrastructure Center, where he worked on network
architecture and network systems. Since 2020,
he has been the Head of the Infrastructure with
Pinduoduo, responsible for design, development and
operation of data centers, servers, and networking.

Hongbo Jiang (Senior Member, IEEE) received
the Ph.D. degree from Case Western Reserve
University in 2008. He was a Professor with the
Huazhong University of Science and Technology.
He is currently a Full Professor with the College
of Computer Science and Electronic Engineering,
Hunan University. His research interests include
computer networking, especially algorithms and
protocols for wireless and mobile networks.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:30:14 UTC from IEEE Xplore. Restrictions apply.

