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A B S T R A C T

Remote Direct Memory Access (RDMA) releases the potential of the data center as it bypasses the kernel.
However, establishing and managing RDMA connections is a significant challenge due to the complex topology
of RDMA networks. We present SECM, a secure and efficient RDMA Communication Management (CM) library,
which can be used for distributed or resilient RDMA network connection setup. The main idea is to split
the RDMA-CM connection setup phase, reuse resources between different connections, and perform multiple
connection setups simultaneously in a pipelined manner. At the same time, adding message authentication
codes to the CM protocol enables authentication of connection requests and prevents malicious connection
requests. SECM establishes 16 connections in 1.42 times the time of 1 connection, tens or hundreds of
times faster than verbs. SECM is compatible with existing commercial RNICs and provides services in a
user-state-driven manner, with low CPU overhead, low memory usage, and no impact on the RDMA data
level.
1. Introduction

Remote Direct Memory Access (RDMA), a high-performance net-
work stack, is being widely utilized in data centers [1–3]. By offloading
the network stack of the data path from the operating system to the
RDMA Network Interface Card (RNIC), a node can directly access data
in a remote node without the involvement of the operating system,
avoiding the overhead incurred by the traditional TCP/IP on the kernel.

Before transmitting data using a high-speed RDMA connection, it is
essential to create a connection between the communicating nodes [4,
5]. Presently, RDMA supports two connection setup methods: out-
of-band connection and connection setup based on Communication
Management (CM) API [6]. The latter, being a native RDMA-supported
method, is widely applicable across InfiniBand (IB) and RDMA over
Converged Ethernet (RoCE) [7,8] protocols. As a result, it stands as
the most widely adopted connection setup method in current data
center applications [9]. Therefore, this paper primarily explores the
connection setup method based on the CM API.

Unfortunately, RDMA has a slow and insecure connection setup.
The latency of creating an RDMA connection (30 ms) is higher than
its data path operation. Since the current demand for network la-
tency in large-scale Key-Value Storages(KVS) services have reached the
microsecond-scale [10–12], high connection times may significantly
decrease the application performance. For instance, it may introduce
delays when scaling resources to handle peak loads. Essentially, the
current CM API’s connection setup interface operates serially, thereby
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increasing the latency for subsequently created connections. In ad-
dition, the messages of RDMA-CM are transmitted in plaintext. This
exposes the connection information to potential attackers, leading to
the risk of sensitive data leakage or even connection crashes.

An intuitive approach to mitigate connection setup latency is to
utilize multi-threading for creating RDMA connections. However, the
creation of a thread incurs consumption of CPU and memory resources,
which are particularly valuable in data centers. In extreme cases, where
the number of threads exceeds the count of physical CPU cores, it may
even deplete the CPU and memory resources of the data center. Second,
maintaining a cache of all connections between all nodes takes up a lot
of host resources (especially memory) [13–15]. This is unacceptable in
a data center trying to use resources efficiently.

In this paper, we propose SECM, a Secure and Efficient connection
setup of CM API. It divides the connection setup into five sub-stages
and uses pipelined parallel execution to avoid serial task execution and
excessive resource consumption. Meanwhile, an authentication mech-
anism is integrated into the CM to ensure the security of connection
setup. Note that all the work of SECM is done at the software layer
and only enhancements are made to the control path, therefore SECM
does not affect the data level transfer and has no impact on RDMA
performance.

We implemented SECM in a user-state dynamic library with no
additional hardware dependencies. Our experiments show that SECM
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Fig. 1. An overview of the basic operation for the active (Client) and the passive
(Server).

can drastically reduce the time for large-scale connection setups, taking
only 1.42 times the time of a single connection to establish 16 con-
nections, especially when establishing connections with more than a
thousand nodes, each connection takes only 200us on average, which
is tens of times shorter compared to the time consumed in serial. At
the same time, it can reduce the success rate of malicious connection
requests to zero.

In summary, we make the following contributions.

• SECM optimizes the performance of CM in large-scale node sce-
narios and achieves RDMA-CM connection setup with low over-
head and low latency. The experimental results show that SECM
has excellent performance at the control level and does not have
any impact on the data level.

• Design and implementation of secure connection setup. Without
changing the existing CM protocol, message authentication codes
are added to the connection setup packets to authenticate the
requester.

In this paper, we first analyze the background of current RDMA
connection establishment, the shortcomings of existing work and the
motivation of our work. Secondly, we describe the scheme design and
corresponding implementation, and conduct experimental proofs in
subsequent chapters. Finally, we summarize the article and present our
conclusions.

2. Background and motivation

2.1. RDMA-CM

Currently, commercial RDMA network cards support three connec-
tion modes, namely reliable connection (RC), unreliable connection
(UC) and unreliable datagram (UD). Because RC mode supports all
RDMA Verbs and can provide lossless networks for data center appli-
cations, RC mode is the most widely used mode in current data center
applications. Therefore, this article mainly studies RDMA connection
setup based on RC mode [16,17].

RDMA-CM is a connection setup method natively supported by
RDMA, which has a set of customized message format, interaction
process and user interface (librdmacm). The Fig. 1 shows the specific
flow of creating an RDMA-CM connection. ① The application allocates
an rdma_cm_id identifier, which is functionally similar to a socket and
serves as the context of RDMA-CM (Create ID). ② rdma_resolve_addr
obtains a local RDMA device to access the remote address (Resolve
Address). ③ rdma_resolve_route determines a route to the remote ad-
dress (Resolve Route), ④ rdma_create_qp allocates a queue pair (QP)
for the communication (Create QP), and ⑤ connect exchange the QP
information to the remote node using a handshake protocol (Connect).
It is easy to use and has detailed implementations that have been
proven in production environments, such as reliable transmission and
timeout mechanisms [18]. However, RDMA-CM still has shortcomings,
it is slow and insecure.
2

Fig. 2. Huge time difference between RDMA-CM connection control paths and Verbs
data paths (issuing 8B READ).

2.2. RDMA-CM disadvantages

RDMA-CM is slow. Fig. 2 shows that the latency to create a
connection is higher than the latency to transfer data. To quantify the
cost of RDMA-CM, we have segmented the connection setup time for
detailed analysis. Consider a node that may need to initiate RDMA
connections to multiple nodes simultaneously (e.g. KVS). With the
current RDMA OFED (OpenFabrics Enterprise Distribution) dynamic
library, which performs RDMA-CM operations serially, later connection
operations must wait for the previous operation to complete, which can
increase the transfer latency. A simple solution is to create multiple
threads to perform connection setups in parallel. However, how many
threads to create is a difficult trade-off issue. Data center resources
are limited and valuable, creating too many threads will consume a
large amount of CPU and memory resources, affecting the performance
of other applications in the data center; creating too few threads will
result in performance degradation when the number of connections
is greater than the number of threads, as the CPU thread scheduling
mechanism frequently switches contexts.

RDMA-CM is insecure. (1) RDMA-CM transfers data in plain-
text [19,20]. This exposes the connection information to the network,
and an attacker can modify or spoof the connection packets to cor-
rupt the normal connection. (2) RDMA-CM lacks authentication. In
a traditional TCP/IP network, it is possible to set up a whitelist
(e.g., firewall) to deny access to unprivileged users [21–23], because
TCP/IP passes through the kernel. But RDMA bypasses the kernel, so
traditional firewalls and security groups are no longer available for
it [24]. Currently, the passive side of RDMA-CM is in a completely open
state, and any node with information about the server side can connect
to it. As a result, the insecurity of RDMA-CM can cause losses to the
users due to information leakage, and even cause the service to fail.

3. Design

The goal of SECM is to provide a secure and efficient method for
establishing RDMA connections between nodes in large-scale clusters,
reducing the time required to establish full network RDMA connections
between nodes. Additionally, SECM aims to enhance the authentication
mechanism for CM connection setup, ensuring the legitimacy and se-
curity of the established connections. In this section, we present the
system architecture of the SECM design, describing its key components
and functions in detail.
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Fig. 3. An overview of SECM Architecture (The square represents tasks awaiting processing at each stage).
3.1. Overview

SECM is designed based on the IB specification and is compatible
with existing RDMA hardware devices. SECM provides connection es-
tablishment services in the form of APIs, so that users do not need
to understand the complex RDMA establishment mechanism, but only
need to provide the information and initialization parameters of the
peer node, and then SECM performs the creation of QPs, CQs, and
other resources, as well as the necessary information exchange. On this
basis, SECM provides a connection authentication mechanism that can
authenticate connection requests to ensure that all RDMA connections
are legitimate (see Fig. 3).

3.2. Pipeline

By analyzing the previous chapters, it can be seen that RDMA-CM
provides default interfaces which are invoked synchronously in order
to simplify the complexity of API usage. Inside the RDMA-CM dy-
namic library provides a mode of asynchronous API invocation, which
includes the more time-consuming stages of resolving addresses, resolv-
ing routes, and requesting connections, which means that we can split
the CM connection establishment process and design it hierarchically
to achieve faster and more efficient connection establishment.

When establishing an RDMA-CM connection, a series of stages is
required, and there is a strict back-and-forth correlation between these
stages, and we must handle the order of function calls correctly. The
tasks of these sub-stage are fixed and are performed in the following
order: creating the connection ID, resolving the remote address, resolv-
ing the route, creating the QP, and initiating the connection request.
When a connection completes the connection ID creation stage, it enters
the address resolution process. Eventually all the stages are executed
in order to complete the connection. If there are multiple connections,
each connection follows the same process. This processing is similar to
the behavior of the CPU when executing instructions, so we designed
the method to process multiple RDMA-CM connection establishment in
a pipelined manner.

We use threads and work queues to design the pipeline. We create
work queues for each step, as well as a corresponding work thread for
it. Each thread is only responsible for handling the relevant interface
calls for this stage, interacting with the kernel state through the user-
state interface. Since the asynchronous calling mode is enabled, the
program does not block here after issuing the relevant command to
the hardware device, but continues to execute the later statements. As
to when the hardware device returns the relevant information, SECM
uses event handler functions to process these callback events. When the
function call that initiates the current connection is made, the creation
of the next connection is started directly without waiting for a response
3

Fig. 4. How SECM use pipeline to execute RDMA-CM (different colored blocks
represent different execution steps of RDMA-CM).

from the hardware device or the remote device. The time it takes to
call a kernel function to initiate a command to the hardware is much
less than the time it takes for the device to respond. For example,
calling the rdma_connect function takes only microseconds, under 10us
in most cases. However, this part of waiting for the callback event of
rdma_connect to return is relatively long and consists of the far-end
processing time and the RTT. The far-end processing delay is around
tens of milliseconds, and the RTT time depends on the network. In
particular, this time may be longer when the network topology is very
complex and large. Therefore, using asynchronous calls, it is possible to
quickly send establishment requests for multiple connections, and then
wait for successful establishment responses for multiple connections at
the same time (see Fig. 4).

Since the function is called asynchronously, we need to handle the
callback function correctly. When the result of one stage is returned, we
need to process it in some way and then add it to the processing queue
of the next stage, and so on, to complete all stages of the function call.

3.3. Security

RDMA Connection Manager receives requests through a reserved
QP of type UD(Unreliable Datagram) in the kernel [25], so it can
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receive packets from any node. All CM packets headers and payloads
are transmitted in plaintext and there is no authentication mechanism.
Only one mechanism is used for packet integrity checking, each packet
contains a 32-bit ICRC checksum. However, the algorithm and initial
seed for this ICRC checksum are publicly available, which means that
the ICRC can be recalculated and does not do anything to protect pack-
ets. Since RDMA packets bypass the kernel, traditional authentication
mechanisms (security groups, firewalls) cannot be applied to RDMA.
This means that an attacker can modify or forge packets established by
a CM connection to establish an illegal connection or disrupt a normal
connection. SECM proposes the use of Message Authentication Codes
(MAC) [26] for packet authentication and integrity checks to ensure
that CM packets cannot be modified or forged.

Message Authentication Code (MAC) generates a fixed length code
by performing cryptographic hash operation on a message, which is
used to verify the integrity and authenticity of the message to ensure
that the message has not been tampered with or forged during trans-
mission. The HMAC [27] is a hash-based message authentication code,
its algorithm formula is:

𝐻𝑀𝐴𝐶(𝑘, 𝑚) = 𝐻(𝑘′ ⊕ 𝑜𝑝𝑎𝑑,𝐻(𝑘′ ⊕ 𝑖𝑝𝑎𝑑, 𝑚)) (1)

H is the hash function, k is the key, m is the message being authenti-
cated, ipad and opad are the padding constants, and k’ is the key after
padding.

HMAC requires two inputs, the protected message and the key. By
analyzing CM data messages, QP Number and starting packet sequence
number (PSN) are necessary and unique values for a connection. To
protect this critical information, the SECM takes the QPN and the
starting PSN as inputs to the MAC message and computes them using a
predefined MAC algorithm. This ensures that these fields are not tam-
pered with or forged during transmission and provides identification
for authentication.

MAC supports a variety of hash algorithms, and different algorithms
can be selected depending on the security level required. Different
hash algorithms may require different key lengths and key distribution
mechanisms. Nodes can select appropriate hash algorithms based on
their security needs and capabilities and provide the corresponding
keys to the SECM for generating the MAC.

4. Implementation

We implemented SECM in the software driver ofMLNX_OFED_LINUX
-5.8-3.0.7.0 [28] version, and since SECM is implemented in the pure
software layer, it can be easily migrated to other versions. We first
present the parallel connection establishment implementation and then
the security enhancement implementation.

4.1. Pipeline connection setup

We split the CM connection setup into five steps, each with a pro-
cessing unit responsible for only one of the stages. Multiple processing
units enable the setup of multiple connections to run as a pipeline.

(1) Resource Creation
In order to be able to handle multiple stages at the same time, we

use a threaded library. For each of the five steps of connection setup,
rdma_create_id, rdma_resolve_addr, rdma_resolve_route, rdma_create_qp, and
rdma_connect, we created a work thread for each of them, and each
of them corresponds to a work queue containing the pending work
requests. We designed the rdma_pipeline_create API, which is responsible
for creating these worker threads and worker queues, as well as creating
a private context and mounting these worker threads and queues to this
context.

(2) Parameter Assignment
In a distributed training network scenario, the configuration of

each connection may be different, it may have unique QP attributes,
destination addresses, or connection properties, therefore, SECM needs
4

Fig. 5. High-level overview of functional interface in SECM.

to provide parameter customization as much as possible. We designed
the rdma_pipeline_params API, which is responsible for accepting various
configuration parameters passed in by the user, and detecting the
legitimacy of their passing, and returning an error message to the user
if an unreasonable configuration parameter is detected. The parameters
that pass the detection are finally mounted on the parallel context for
use by subsequent stage functions.

(3) Connection Setup
After making the preparation, the user needs to initiate the request

for parallel connection setup. We designed the rdma_pipeline_connect
API, which is responsible for initiating all the connection requests, and
SECM will send all these tasks to the work queue of rdma_create_id,
and notify the work thread of rdma_create_id to start processing the
work tasks here by means of signaling. When the CREATE_ID phase
of the first connection is processed, SECM adds the CM ID created in
this phase to the work queue of RESOLVE_ADDR in the next phase
and notifies the RESOLVE_ADDR thread to start processing the work
request. And so on, each connection will go through the five phases
of rdma_create_id, rdma_resolve_addr, rdma_resolve_route, rdma_create_qp,
and rdma_connect until the callback event of the call to rdma_connect
is returned, and then, a connection is established. Overall, the five
steps work in a pipelined manner, requiring only fixed thread resources,
which can achieve efficient results.

(4) Connection Disconnection
Considering that when a node dynamically exits the cluster, it

needs to disconnect all previously established connections, we designed
the rdma_pipeline_disconnect API, which is responsible for releasing all
occupied resources and sending disconnect messages to the remote end
to quickly and efficiently disconnect all established connections.

Event Handle: Since each worker thread uses asynchronous calls
when calling the corresponding stage function, we need threads to
handle these asynchronous returned results. This thread gets the asyn-
chronous results returned by the function in real time by listening to
the rdma_get_cm_event function. Depending on the type of event in the
result, the result is returned to a different handler function, which will
send the work request to the next stage of the work queue. Since the
event handler function needs to handle all the event callbacks of the
connection, we will dynamically adjust the number of threads here
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Fig. 6. Detailed process for establishing a secure connection with MAC.

Fig. 7. SECM secure packet format.

according to the number of connections as well as the number of CPU
cores to handle these callback events to speed up the connection setup.

Error Handle: Due to unreachable remote nodes, incorrect local
connection configuration, etc., the connection may enter an error state,
so we need to handle these corrupted and unestablished connections
correctly. SECM adds an error flag bit to the connection ID, when an
unrecoverable error is encountered, error flags the error state, and at
the same time, interrupts the pipeline execution, and jumps to the end
of the connection setup state. The user can determine whether the
connection is successfully established based on this flag bit.

4.2. Security module

SECM provides security enhancements to CM. we verify the iden-
tity of the connection initiator by adding MAC information to the
CM connection packet. Fig. 6 shows the detailed flow of the secure
connection.

(1) Include the MAC when sending a connection request.
The MAC needs to be sent together with the message in order to

play its role, so the connection initiator needs to embed the MAC
information in the connection message. How to carry MAC information
without destroying the original packet information becomes a tricky
problem.

By analyzing the CM packet fields, SECM selects the Private Data
field to carry the MAC information. The Private Data field is an opaque
piece of data specified in the CM protocol, which can be user-defined.
The available size of the Private Data field is 56 bytes, which is enough
to hold the complete MAC information(see Fig. 7). At the same time,
Private Data being a field that can be assigned a value in the user state
means that the SECM does not need to make any changes to the RNIC
to pass the MAC to the receiver along with the request packet.

(2) Verification of MAC at the receiver side.
When a node receives a connection request, it needs to verify the

MAC in the request. SECM takes QPN, and starting PSN as the message,
so it needs to take out this information from the request packet first,
compose the message, and then compute it with a key to get the MAC.
The node then compares the computed MAC with the MAC carried in
the Private Data, and if the match passes, then it is delivered to the
upper layer to If the match passes, the request will be delivered to
the upper layer for request acceptance; otherwise, it will be regarded
5

Fig. 8. A comparison of time overhead on connections.

as an illegal connection request and discarded, and the connection
information will be written to the illegal access log for subsequent
review by the user.

5. Evaluation

We built a small cluster containing 10 physical machines, each
equipped with a Mellanox ConnectX-6 DX [29]. The 10 physical ma-
chines are connected to a 100G switch over 100G fiber. Each host OS
is Ubuntu 20.04.5 LTS with a kernel version of 5.15.0-102-generic, and
the RDMA driver version is MLNX_OFED_LINUX-5.8-3.0.7.0, and all of
them use RoCEv2 protocol.

5.1. Connection setup test

In our experiments, we tested the performance of SECM and an-
alyzed it in comparison with two other different connection estab-
lishment methods, namely serial connection setup and multi-threaded
connection setup. The main goal of our experiments is to compare
the time consumption of these three methods for different number of
connections. Fig. 5 shows the detailed process.

Serial connection setup is a sequential way of establishing connec-
tions one by one, i.e., one connection is established before the next
connection is established. The advantage of this approach is that it is
simple and intuitive, but it can lead to long waiting times in the case of
a large number of connections. In contrast, multi-threaded connection
setup allows for multiple connections to be established at the same
time by opening a separate thread for each connection to be processed
in parallel. This approach can be effective in increasing the speed of
connection setup. However, it may also introduce some additional over-
heads such as thread management and resource contention. Especially
when there is a large number of connections to be established..

In order to closely compare the performance differences of these
three methods, we set different numbers of connections in our ex-
periments and recorded the elapsed time required for each method
to complete connection setup. By comparing the elapsed time under
different numbers of connections, we can evaluate the performance of
these three methods under different load conditions.

As can be seen in Fig. 8, the serial connection setup method shows
a sharp increase in time consumption as more connections are created,
especially in the case of a larger number of connections, this method
may take several seconds, and has the worst performance. The multi-
threaded connection setup method has a much better performance in
terms of time consumption, and the SECM method has the best time
consumption performance in the experimental results, with the increase
of the number of connections, the time consumption curve is very
smooth, and the time consumption is one order of magnitude less than
that of the traditional serial method, and at the same time, it is better
than the multi-threaded method, and on average, it only takes about
200us to complete the connection for each connection.
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Fig. 9. A comparison of time overhead on large amount connections. As the number
of connections increases to a larger number, SECM shows better performance.

Fig. 10. A comparison of CPU usage on connections: Multi-thread takes up more CPU
resources.

Fig. 9 reflects the time-consumption of the multi-threaded approach
and SECM as the number of connections increases. In the case of a
sharp increase in the number of connections, the time-consumption of
SECM is much better than that of the multi-threaded approach, the
main reason being that the multi-threaded approach creates a large
number of threads as the increase in the number of connections, which
results in frequent context switching and thus longer execution times
and poorer performance. SECM, on the other hand, uses only a limited
number of threads and is not affected by the number of connections,
resulting in excellent performance.

In addition to the time-consumption analysis, we also need to
consider the resource usage. We conducted tests to compare the CPU
occupancy and memory usage when using the SECM method, the serial
approach and the multi-threaded approach under different numbers of
connections. Through our experiments, we found that SECM has lower
CPU occupancy and memory usage when dealing with a large number
of connections, showing better resource utilization efficiency.

Fig. 10 shows the CPU usage. As the number of connections in-
creases, the CPU utilization of the serial approach stays at a stable level,
mainly because the serial program can only handle one connection at
a time and the CPU resources consumed to create a connection are
relatively fixed, so the CPU occupancy of the single-threaded serial
approach stays at a stable level. On the other hand, the CPU occupancy
of the multi-threaded approach increases dramatically, especially when
creating connections to 4096 nodes, the multi-threaded approach’s
CPU occupancy is more than 40 times that of the benchmark. The
main reason is that this approach needs to create a thread for each
connection, which brings frequent context switching, and the switching
between threads requires saving and restoring the context information
of the threads, a process that requires the CPU to perform frequent
switching operations and consumes a large amount of CPU resources.
In contrast, the SECM method has a relatively low CPU utilization and
6

Fig. 11. A comparison of memory usage on connections: SECM allocates few threads,
while Multi-thread allocates more.

Fig. 12. Time overhead of security modules implemented based on different hash
algorithms for creating different number of connections. SECM can create secure and
reliable connections without significant time overheads.

changes slowly as the number of connections grows, e.g., only one-third
of the multi-threaded method at 4096 connections.

Fig. 11 shows the memory usage. In terms of memory occupancy,
SECM shows a clear advantage. As the number of connections increases,
the memory footprint of all approaches starts to increase, the main
reason being the need to allocate the appropriate hardware and soft-
ware resources for each connection, including QP, CQ, FD, and so on.
Among them, SECM has the slowest memory growth rate and the multi-
threaded approach has the fastest growth rate. As SECM has optimized
the performance for large-scale connections in librdmacm dynamic li-
brary, such as optimizing the event callback function, multiplexing the
event channel to accept the callback events of multiple connections,
and so on. As a result, SECM exhibits a lower memory footprint
compared to the serial approach. On the other hand, the multi-threaded
approach needs to allocate a certain amount of memory space for each
thread to store the thread’s stack space and execution context and other
information, which will take up more memory resources than the serial
approach when the number of threads increases.

5.2. Security connection setup test

In our security tests, we tested the impact of different HMAC algo-
rithms on connections.SECM provides three hash functions by default,
MD5, SHA, and SHA256, and we measured the time-consuming impact
of these HMAC algorithms on connections.

Fig. 12, the introduction of the security module has some impact on
the connection setup time, but the impact is very minor. As expected,
SHA256 has the highest latency and is the most secure and expensive
algorithm. The computation of HMAC introduces a latency of about
5us or so for each connection, but it provides a secure authentication
mechanism that enables selective acceptance of connection requests by
the passive side to prevent unauthenticated connection requests from
being established.
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6. Related work

DCT [30]: Currently NVIDIA added DC type of QP in mlx5 driver,
C combines the advantages of UD and RC, supports read/write uni-

ateral semantics, and does not need to create connection explicitly at
he remote end. DC maintains a pool of responders (DCRs) internally,
hich is able to process the request messages quickly. Since the pooled

esources are limited, when there are insufficient resources in the pool,
CQP will keep switching among different remote addresses, which
ill cause a large number of connection messages to appear, and in
xtreme cases the number of data messages may be equal to the number
f connection messages, which will lead to a continued degradation of
pplication performance.
KRCORE [14] proposes a scheme to share RC and DC type QPs

n the kernel state, by pooling a large number of RC and DC QPs in
he kernel to provide services to the user in a virtual QP scheme, but
t plunges all the paths of RDMA into the kernel, which reduces the
atency of the connection setup, but increases the time consumed at
he data level. The main reason is that each data sending needs to be
lunged into the kernel to transform the request from the virtual QP
n the user state to the physical QP shared by the kernel. Also, due to
he shared QP, any wrong operation may damage the QP, which affects
ll the virtual QPs in the user-state based on this physical QP and may
ave an impact on the data transfer.

Lee et al. [31,32] suggested replacing the ICRC field with MAC
o implement an authentication mechanism for RDMA packets. How-
ver, existing devices such as NICs and routers may consider the
AC information as wrong ICRC and discard the packet. This ap-

roach can lead to incompatibility of RDMA packets with existing
ardware devices [20]. Therefore it is not used in the existing RDMA
nvironment.

. Conclusion

This paper presents SECM, a control-plane enhancement for RDMA
hat accelerates RDMA-CM connection setup. It provides high perfor-
ance, low-overhead connection setup and adds an authentication
echanism to CM. SECM reduces the control path costs of RDMA-CM
ithout incurring data path costs. SECM is compatible with existing
DMA hardware and software resources. Experimental results confirm

he performance and security of SECM.

RediT authorship contribution statement

Xingyu Guo: Conceptualization, Formal analysis, Investigation,
ethodology, Software, Writing – original draft. Guo Chen: Conceptu-

lization, Funding acquisition, Resources, Supervision, Writing – review
editing. Xiaoning Zhan: Data curation, Writing – original draft. Ting
u: Conceptualization, Supervision. Zhaojiao Han: Conceptualization,
upervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The authors do not have permission to share data.

cknowledgment

This work was supported in part by the National Natural Science
oundation of China under Grant 62222204 and Grant 62172148,
nd in part by the National Key Research and Development Program
f China under Grant 2023YFB3002203, and in part by the Major
pecial project of Changsha science and technology plan under Grant
7

h2401005.
References

[1] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir
Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad
Cheema, et al., Empowering azure storage with RDMA, in: 20th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 23, 2023,
pp. 49–67.

[2] Shin-Yeh Tsai, Yiying Zhang, Lite kernel rdma support for datacenter applica-
tions, in: Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 306–324.

[3] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
Marina Lipshteyn, RDMA over commodity ethernet at scale, in: Proceedings of
the 2016 ACM SIGCOMM Conference, 2016.

[4] Haoran Zhang, Adney Cardoza, PeterBaile Chen, Sebastian Angel, Vincent Liu,
Fault-tolerant and transactional stateful serverless workflows, in: Operating Sys-
tems Design and Implementation,Operating Systems Design and Implementation,
2020.

[5] Zhipeng Jia, Emmett Witchel, Boki: Stateful Serverless Computing with Shared
Logs.

[6] NVIDIA, RDMA CM API, 2013, https://docs.nvidia.com/networking/display/
rdmaawareprogrammingv17/rdma_cm+api.

[7] InfiniBand Trade Association, Infiniband architecture specification release 1.2.1
annex a16: RoCE, 2010.

[8] InfiniBand Trade Association, Infiniband architecture specification release 1.2.1
annex a17: RoCEv2, 2014.

[9] Bongjae Kim, TSL-RDMA: Thread-safe and lightweight RDMA API for InfiniBand-
based cluster computing systems, Int. Inf. Inst. (Tokyo). Inf. 19 (11A) (2016)
5281.

[10] Xingda Wei, Rong Chen, Haibo Chen, Binyu Zang, Xstore: Fast rdma-based
ordered key-value store using remote learned cache, ACM Trans. Storage (TOS)
17 (3) (2021) 1–32.

[11] Xiaoyi Lu, Dipti Shankar, Dhabaleswar K. Panda, Scalable and distributed key-
value store-based data management using RDMA-memcached, IEEE Data Eng.
Bull. 40 (1) (2017) 50–61.

[12] Xingda Wei, Rong Chen, Haibo Chen, Fast RDMA-based ordered key-value store
using remote learned cache, in: Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, 2020, pp. 117–135.

[13] Teng Ma, Tao Ma, Zhuo Song, Jingxuan Li, Huaixin Chang, Kang Chen, Hai Jiang,
Yongwei Wu, X-RDMA: Effective RDMA middleware in large-scale production
environments, in: 2019 IEEE International Conference on Cluster Computing,
CLUSTER, 2019.

[14] Xingda Wei, Fangming Lu, Rong Chen, Haibo Chen, KRCORE: A microsecond-
scale RDMA control plane for elastic computing, in: 2022 USENIX Annual
Technical Conference, USENIX ATC 22, 2022, pp. 121–136.

[15] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bojie Li, Binzhang Fu,
Kun Tan, StaR: Breaking the scalability limit for RDMA, in: 2021 IEEE 29th
International Conference on Network Protocols, ICNP, IEEE, 2021, pp. 1–11.

[16] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al., HPCC: High
precision congestion control, in: Proceedings of the ACM Special Interest Group
on Data Communication, 2019, pp. 44–58.

[17] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
Marina Lipshteyn, RDMA over commodity ethernet at scale, in: Proceedings of
the 2016 ACM SIGCOMM Conference, 2016, pp. 202–215.

[18] Tarick Bedeir, Building an RDMA-capable application with IB verbs, in: Technical
report, HPC Advisory Council, 2010.

[19] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, Torsten Hoe-
fler, ReDMArk: Bypassing RDMA security mechanisms, in: USENIX Security
Symposium, 2021, pp. 4277–4292.

[20] Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, Torsten Hoefler,
sRDMA: efficient NIC-based authentication and encryption for remote direct
memory access, in: Proceedings of the 2020 USENIX Conference on Usenix
Annual Technical Conference, 2020, pp. 691–704.

[21] Trisha Datta, Nick Feamster, Jennifer Rexford, Liang Wang, spine: Surveillance
protection in the network elements, in: 9th USENIX Workshop on Free and Open
Communications on the Internet, FOCI 19, 2019.

[22] Roland Meier, Petar Tsankov, Vincent Lenders, Laurent Vanbever, Martin Vechev,
NetHide: Secure and practical network topology obfuscation, in: 27th USENIX
Security Symposium, USENIX Security 18, 2018, pp. 693–709.

[23] Jiarong Xing, Wenqing Wu, Ang Chen, Architecting programmable data plane
defenses into the network with FastFlex, in: Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, 2019, pp. 161–169.

[24] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang, Hongyi Liu, Ang Chen,
Bedrock: Programmable network support for secure RDMA systems, in: 31st
USENIX Security Symposium, USENIX Security 22, 2022, pp. 2585–2600.

[25] InfiniBand Trade Association, Infiniband architecture specification release 1.2.1,
2014.

[26] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of the cipher block
chaining message authentication code, J. Comput. System Sci. 61 (3) (2000)
362–399.

http://refhub.elsevier.com/S1389-1286(24)00373-6/sb1
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb1
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb1
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb1
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb1
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb1
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb1
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb1
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb1
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb2
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb2
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb2
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb2
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb2
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb4
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/rdma_cm+api
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/rdma_cm+api
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/rdma_cm+api
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb7
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb7
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb7
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb8
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb8
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb8
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb9
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb9
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb9
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb9
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb9
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb10
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb10
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb10
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb10
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb10
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb12
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb12
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb12
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb12
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb12
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb13
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb13
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb13
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb13
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb13
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb13
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb13
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb18
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb18
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb18
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb22
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb22
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb22
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb22
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb22
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb25
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb25
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb25
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb26
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb26
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb26
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb26
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb26


Computer Networks 250 (2024) 110541X. Guo et al.
[27] James M. Turner, The keyed-hash message authentication code (hmac), Federal
Inf. Process. Stand. Publ. 198 (1) (2008) 1–13.

[28] NVIDIA, MLNX_OFED_LINUX-5.8-3.0.7.0., 2023, https://network.nvidia.com/
products/infiniband-drivers/linux/mlnx_ofed/. (Accessed 9 July 2023).

[29] NVIDIA, Mellanox ConnectX-6 DX, 2015, https://www.nvidia.com/content/dam/
en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf.
(Accessed on 2015).

[30] OFED, Dynamically connected transport, 2013, https://www.openfabrics.org/
images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_
Verbs.pdf.

[31] Manhee Lee, Security Enhancement in Infiniband Architecture, IEEE, 2005.
[32] Manhee Lee, Eun Jung Kim, A comprehensive framework for enhancing security

in infiniband architecture, IEEE Trans. Parallel Distrib. Syst. 18 (10) (2007)
1393–1406.

Xingyu Guo received the B.S. degree from Hunan Univer-
sity, in 2022. He is currently pursuing the master’s degree
with Hunan University, China. His research interests include
computer networking.
8

Guo Chen received the Ph.D. degree from Tsinghua Univer-
sity in 2016. He was a Researcher with Microsoft Research
Asia from 2016 to 2018. He is currently a Professor with
Hunan University. His current research interests include
networked systems and with a special focus on data center
networking. He has published more than 40 papers includ-
ing those on top conferences/journals like NSDI, USENIX
ATC, INFCOM, ToN, JSAC. His research has been adopted
in Huawei Kunpeng CPU, Tencent switch, Tencent CDN and
Baidu wireless search, etc.

Xiaoning Zhan received the B.S. degree from Hunan Uni-
versity, in 2020. He is currently pursuing the master’s
degree with Hunan University, China. His research interests
include computer networking.

http://refhub.elsevier.com/S1389-1286(24)00373-6/sb27
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb27
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb27
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb31
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb32
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb32
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb32
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb32
http://refhub.elsevier.com/S1389-1286(24)00373-6/sb32

	SECM: Securely and efficiently connections setup using RDMA-CM
	Introduction
	Background and Motivation
	RDMA-CM
	RDMA-CM Disadvantages

	Design
	Overview
	Pipeline
	Security

	Implementation
	Pipeline Connection Setup
	Security Module

	Evaluation
	Connection Setup Test
	Security Connection Setup Test

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


