
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024 1

Slim and Fast: Low-Overhead Container Overlay
Network With Fast Connection Setup

Fusheng Lin , Xin Zhang , Guo Chen , Li Chen , Kenli Li , Senior Member, IEEE,
and Hongbo Jiang , Senior Member, IEEE

Abstract—Large-scale cloud applications today are often de-
ployed using multiple containers, and a container overlay network
is the de facto method to provide connectivity among these contain-
ers. However, the existing tunneling-based overlay network incurs
significant performance overhead due to the need of transforma-
tion for every packet. Recent work Slim, through manipulating
connection-level meta-data, allows containers to use host OS sock-
ets directly thus they can achieve good performance without extra
packet tunneling. Nevertheless, the connection setup is significantly
slowed down, which requires an extra round-trip communication
between both sides to pass the mapping information of the host OS
socket and the container socket. This greatly hurts the performance
of many cloud applications that must process short connections at
high speed. We propose SlimFast, a low-overhead container overlay
network which provides a fast connection setup. SlimFast directly
uses the host OS socket for container communication as Slim. How-
ever, SlimFast needs no extra communication during connection
setup. We reserve a dedicated host port for the container network
and use socket mapping table to locally find the right container
socket during connection setup. We implement SlimFast which is
compatible with existing container applications. Experiments show
that, SlimFast can improve the connection setup time by about 2.1x
compared with Slim, meanwhile maintaining low-overhead during
data transmission as Slim. This brings significant performance
improvement to real applications. Particularly, testbed results show
that SlimFast improves the throughput of Nginx proxy and Mem-
cached by about 0.9x and 2.2x, respectively.

Index Terms—Container, container overlay network, connection
setup.

I. INTRODUCTION

CONTAINERS, which offer lightweight isolation and
portability, have now become the major way of managing,

deploying and executing cloud applications [24], [25], [26], [27].

Manuscript received 15 September 2022; revised 20 April 2023; accepted 25
April 2023. Date of publication 2 June 2023; date of current version 8 March
2024. This work was supported in part by the National Natural Science Founda-
tion of China under Grants 62222204 and 62172148, in part by the National Key
Research and Development Program of China under Grant 2020YFB2104000,
in part by the Natural Science Foundation of Hunan Province for Excellent
Young Scholars under Grant 2021JJ20027, and in part by the Training Program
for Excellent Young Innovators of Changsha. Recommended for acceptance by
K. Gopalan. (Fusheng Lin and Xin Zhang are co-first authors.) (Corresponding
author: Guo Chen.)

Fusheng Lin, Xin Zhang, Guo Chen, Kenli Li, and Hongbo Jiang are
with the College of Computer Science and Electronic Engineering, Hunan
University, Changsha 410000, China (e-mail: linfusheng@hnu.edu.cn;
zxzx2020@hnu.edu.cn; guochen@hnu.edu.cn; lkl@hnu.edu.cn; hongbo-
jiang2004@gmail.com).

Li Chen is with Huawei, Longgang 518000, China (e-mail: crischenli@
gmail.com).

Digital Object Identifier 10.1109/TCC.2023.3282238

For large-scaled applications, typically, they use a large number
of containers to host various parts of their application logic,
which collaborate together as a whole to serve certain tasks [20],
[21]. This requires efficient and flexible network connectivity
among containers possibly located on multiple machines in the
data center.

Container overlay network [3], [17], [18], [19], is the de
facto technique that provides such network connectivity be-
tween containers. In general, container overlay networks are
based on tunneling approach (e.g., VxLAN) [6], that can pro-
vide a customized virtual network between containers on top
of physical data center networks. Although offering flexible
network connectivity regardless of existing physical infras-
tructure, such tunneling-based container overlay network in-
curs significant performance overhead, leading to much lower
bandwidth, higher latency, and consuming more CPU resources
compared to native host network, as observed by previous works
[16], [22], [23].

Fundamentally, the performance overhead for tunneling-
based container overlay network is due to the need of trans-
formation for every packet, traversing the network stack twice
(host stack and overlay stack) at both the sender and receiver
sides. As such, recently Slim [23] tackles this problem by directly
passing sockets in the host operating system (OS) to containers
when container sockets are created. Such approach helps Slim
to avoid extra packet transformation and keep the same per-
formance as host sockets during data transmission. However,
to maintain unchanged flexibility and application compatibility
of original container overlay network, Slim has to manipulate
connection-level metadata during connection setup. Particularly,
in a flexible virtual network, upper-layer container sockets may
bind to any virtual IP/port as they like. Therefore, before setup
the connection, Slim requires an extra round-trip communication
between the client and the server, so the client knows which
under-layer host socket (i.e., which port1) on the server it should
connect to thus to reach the target upper-layer container socket.
This greatly lengthens the time for connection setup, which
hurts the performance of many cloud applications that must
process short connections at high speed [14], such as backend
systems (e.g., memcached clusters) [13], middleboxes (e.g., SSL
proxies [12] and redundancy elimination [11]) and serverless
applications2 [20], [21].

1In practice, the mapping of container IP to host IP is globally known [23].
Detailed background is introduced in Section II-B.

2Containers that host serverless functions come and go, so the connection
lasting time are very short [15].

2168-7161 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9216-789X
https://orcid.org/0000-0003-1431-9322
https://orcid.org/0000-0002-6069-6869
https://orcid.org/0000-0002-4228-7885
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-7372-2539
mailto:linfusheng@hnu.edu.cn
mailto:zxzx2020@hnu.edu.cn
mailto:guochen@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:hongbojiang2004@gmail.com
mailto:hongbojiang2004@gmail.com
mailto:crischenli@gmail.com
mailto:crischenli@gmail.com

2 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

In this article, we ask whether we can use host socket for
container communication as Slim but need no extra communi-
cation during connection setup, thus keeping low-overhead and
fast in both data transmission and connection setup. This calls
for an alternative way to find the mapping between container
sockets and host sockets when the client tries to connect to the
server. To address this problem, we present SlimFast. SlimFast’s
key insight is that: The client does not try to find some certain
target host socket. Instead, the client connects and establishes a
connection to a dedicated and publicly known host socket (port)
which is specifically reserved for container overlay network.
Necessary information of the destined container is embedded
when the client connects with the host socket. Since the server
host knows all its local upper-layer container sockets (monitor-
ing container socketlisten), according to the embedded infor-
mation, it can distribute the established host socket to the target
container, and use it directly for later data transmission in the
container. This saves an extra communication during connection
setup.

Based on the above idea, we design and implement Slim-
Fast, a low-overhead container network with fast connection
setup. SlimFast is compatible with current Linux and Docker,
which needs no modification to existing applications (Our
implementation is open-sourced at [8]). Testbed experiments
show that, SlimFast can improve the connection setup time
by about 2.1x compared with Slim. Meanwhile, SlimFast also
maintains low-overhead during data transmission as Slim, which
can saturate 10 Gbps network for bulk data transfer with about
56% CPU utilization compared to the current tunneling-based
overlay solution. Moreover, we have evaluated the performance
of upper-layer applications using SlimFast. For intensive short-
lived connection scenarios, SlimFast improves the throughput
of Nginx proxy and Memcached by about 0.9x and 2.2x,
respectively, compared with Slim. Meanwhile, for long-lived
connection scenarios, SlimFast achieves about 22% and 92%
higher throughput for Nginx proxy and Memcached, respec-
tively, than the current tunneling-based overlay solution (which
is also slightly higher than Slim). Furthermore, based on the
idea of connection mapping, we extend the design of SlimFast to
support connectionless protocol and packet-level security policy,
which is a hard task in current low-overhead container overlay
networks.

The major contributions of this article are summarized as
follows:
� We observe the long connection setup time in the latest

low-overhead container overlay network, and evaluate its
impact on the performance of typical applications.

� We propose SlimFast, a low-overhead container network
with fast connection setup, which uses reserved server port
and local socket mapping table to remove extra round-trip
communication during connection setup.

� SlimFast also avoids the overlay protocol stack encapsula-
tion overhead of connectionless protocol and is compatible
with existing container overlay network security policies,
with the help of extended socket matching table.

� We thoroughly evaluate SlimFast’s performance using ded-
icated micro-benchmarks as well as real applications in-
cluding Nginx and Memcached. We show that SlimFast is
fast during connection setup time and keeps low-overhead

during data transmission, which can greatly improve the
performance of upper-layer applications.

II. CONTAINER OVERLAY NETWORK AND THE PROBLEM

In this section, we first describe how container network
works and why current tunnel-based overlay network is inef-
ficient. Next, we show how Slim improves the efficiency of
container overlay network in data transmission, but sacrifices
the efficiency of connection setup. Finally, we show that fast
connection setup is important to container applications and how
slow connection setup can affect the performance of 2 real-world
applications.

A. Current Tunnel-Based Overlay Network

For container communication, there are mainly 4 options:
bridge mode, host mode, macvlan mode and overlay mode.
Bridge mode creates a virtual bridge in the host. Containers
connect to the virtual bridge via veth (Virtual Ethernet De-
vice) [29]. When a container in bridge mode communicates with
the container of other hosts, the container IP address is translated
to host IP address according to NAT rules, and then forward to
NIC through veth pairs; In Macvlan mode, hosts map container
NIC to virtual NIC of a host using mapping relationships. When
containers communicate with containers on other hosts, routing
problems caused by a large number of containers need to be
considered; In host mode, the container abandons isolation and
uses the host network stack and NIC, that is, the host’s IP address
and unallocated port. The container does not have a separate IP
address, which makes it difficult for the data center to manage the
container, and the ports available to the container will be limited
by all the containers on the host. Host mode and Macvlan mode
enables containers in different hosts to communicate but they
complicate management in datacenters. In today’s data centers,
container overlay network (i.e., overlay mode) [3], [17], [18],
[19] has become the de facto method for cross-host container
communication as it provides flexibility for containers.

The current overlay network provides a network isolation for
containers through tunneling. Each container has their own IP
address, virtual network interface, IP routing tables, firewall
rules, etc.. Unlike the host mode or macvlan mode, in overlay
mode, the container’s IP is not dependent on the host’s, allowing
better flexibility for containers. In overlay network, containers
connect to a virtual switch (e.g., Open vSwitch [28]) for commu-
nicating with outside world via veth. The virtual switch enables
the overlay traffic to travel across the physical network by
encapsulation of overlay traffic, i.e., wrapping packets inside of
other packets (if the tunnel protocol is VxLAN, it wraps Ethernet
frame inside of a UDP packet). Fig. 1(a) shows the packets
flow in container overlay network. When a container application
sends a packet, it first traverses the overlay network stack, adding
network header (e.g., virtual IP header and virtual Ethernet
header) and then is sent from the virtual network interface. The
packet will be forwarded out by virtual switch according to its
forwarding strategy. As Fig. 1(b) shows, the virtual switch will
add a UDP header, physical IP header and physical Ethernet
header to the Ethernet frame (assuming VxLAN is the tunneling
protocol). The Ethernet frame is encapsulated as a UDP packet
and delivered from the physical network interface. As discussed

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: SLIM AND FAST: LOW-OVERHEAD CONTAINER OVERLAY NETWORK WITH FAST CONNECTION SETUP 3

Fig. 1. (a) Packet processing path in tunnel-based container overlay network,
(b) Packet structure in tunnel-based container overlay network (VxLan-based).
User data that comes from container applications should first traverse the overlay
network stack and then traverse the host network stack.

above, the drawback of overlay mode is the high-overhead of
the packet transformation.

B. Overlay Network’s IP Address Management

The container overlay network provides network-level isola-
tion to the container using IPAM (IP Address Management) that
monitors and manages IP addresses. When a container starts, the
IPAM automatically chooses a unique IP address from the avail-
able IP pools and assigns it for that container, and that address
will be released when the container exits. When a container
uses the IP address to communicate with another container,
the container overlay network matches the corresponding host
address through IPAM. Different solutions have different IPAM
strategies. For example, in Weave [18], each host owns a certain
IP address space and those hosts share the information of IP
address space that belongs to themselves via gossip mechanism,
thus hosts can learn about the IP mapping information between
container and host. Other solution like Flannel [3] uses a KV
store (etcd) to maintain a mapping between allocated subnets and
real host IP addresses. For overlay network solutions, the map-
ping between containers’ overlay virtual IP and hosts’ physical
IP are usually cached in each host, which can be fetched quickly
when establishing a network connection.

C. Latest Low-Overhead Overlay Network: Slim

In Section II-A, the container overlay network needs to enter
the overlay network stack and host network stack. The high
overhead of packet conversion results in poor performance of
the overlay network. It easily consumes about 2x CPU resources
during data transmission compared with native host socket, as
observed in previous works [16], [22], [23]. In order to relieve the
burden of per-packet transformation (i.e., each packet traverses
the network stack twice) during data transmission, Slim [23],
a low-overhead container overlay network, directly passes the
host namespace file descriptor to the container. By this way,
packets sent by container applications can bypass the overlay

Fig. 2. Comparison of packet flow during data transmission between (a)
tunnel-based overlay network and (b) Slim (the dotted line).

network stack and vSwitch, reducing the overhead of per-packet
transformation by only traversing the host network stack.

Fig. 2(a) shows the packet processing path in a current tunnel-
based overlay network. In contrast, as shown in Fig. 2(b), Slim
replaces the overlay socket with the host socket with the help
of SlimSocket and SlimRouter. SlimSocket is a user-space shim
layer dynamically linked with application libraries, intercepting
invocations of container’s socket-related system calls (syscall).
SlimRouter is a user-space process running on the host that
establishes and maintains a host socket for container commu-
nication. SlimSocket can transfer data with SlimRouter through
inter-process communication. SlimSocket intercepts Socket sys-
tem calls and forwards them to SlimRouter, completing the
connection between containers and informing clients of the
information needed for host connection. SlimRouter will estab-
lish connections between hosts according to host information.
When the host connection is established, the host socket will be
transferred to SlimSocket through inter-process communication.
SlimSocket will replace the original container socket with the
host socket. As such, containers can operate the host socket
directly, bypassing the overlay network stack and the vSwitch
forwarding.

D. Long Connection Setup Time in Slim

In this section, we will introduce Slim and the problems
with it in more detail. Although Slim provides an efficient
mechanism for data transmission in container overlay network, it
sacrifices the connection setup time, which is much longer than
the current tunnel-based overlay network solutions. Fig. 6(a)
overviews the connection setup procedure in Slim. Specifically,
when server container calls bind on the socket with its overlay
IP (e.g., 10.0.0.1) and port (e.g., 80), it will send a request to
SlimRouter, then, SlimRouter calls bind with host IP (e.g.,
1.2.3.4) and an unused host port (e.g., port 1234), and return
the host socket to the container. The server container stores the
overlay socket and host socket at the same time, and listens for

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 3. 99_th percentile TCP connection setup time in native host network,
Weave (tunnel-based overlay network) and Slim.

the overlay socket and host socket. When SlimSocket on the
client side detects that the client container wants to set up a
connection with the server container that binds on IP 10.0.0.1
and port 80, it first establishes a network connection to the server
container using a standard tunnel-based overlay network (the
mapping between container IP and host IP). When the client
container is successfully connected to the server container, the
server container sends the host IP 1.2.3.4 and port 1234 to
the client container through send. Then, the client container
gets the target host IP address and the port which are actually
used by the target server container, through this tunnel-based
overlay network connection. Until SlimSocket learns about the
information, it can send a request carrying the target host IP
address 1.2.3.4 and port 1234 to SlimRouter. Then SlimRouter
on the client side starts to establish a network connection with
the SlimRouter process that on the server side, using the host IP
1.2.3.4 and port 1234. When the host network connection has
established, it returns the host socket back to the container. Then
the containers on both sides can directly use the host socket for
communication, requiring no extra packet transformation (e.g.,
VxLAN encapsulation/decapsulation).

To evaluate the connection setup time, we conduct a testbed
experiment on a 10 Gbps network (detailed testbed settings
described in Section V). Fig. 3 shows the 99_th percentile
time consumed by TCP connection (we test 10 K times in
total). Slim takes 3.4x and 4.8x longer connection setup time
on average compared to tunnel-based overlay network (Weave)
and native host network, respectively. The reason why Slim
takes such long time is because of the complex connection
establishment mechanism, which consists of a number of steps:
e.g., establishing overlay network connection, sending mapping
information between client and server via the overlay TCP
connection, the interprocess communication, etc., as discribed
above. The performance is even worse when the secure mode is
on. This significantly hurts the application performance.

E. Fast Connection Setup is Important to Applications

Short-lived connections are not uncommon for container
applications in datacenters [38], [39], [40]. Actually, many
applications (e.g., PHP applications [41]) tend to establish/close
connections on demand instead of maintaining long-lived
persistent connections, because of the resource limitation,
difficulty of debugging, and the risk of causing deadlock/error
in the server side, etc.. For those applications, the connection
setup time is crucial to their overall performance. We use two
real-world applications, Nginx [30] and Memcached [44] as
examples to illustrate this point.

Nginx Load Balancer: Nginx [30] load balancer is a widely
used container application in datacenters [7]. In practice,

Fig. 4. Performance of applications using Weave (tunnel-based overlay net-
work) and Slim, respectively. (a) Throughput of the backend web server with
1 K concurrent connections. (b) Response rate of Memcached server, creating
30 K connections in total.

container applications that run Nginx load balancer need to
process many concurrent short-lived connections with high-
performance, under the following typical scenarios:

1) For the sake of performance, Nginx load balancer main-
tains a number of idle persistent connections (adjustable by
setting keepalive parameter in the config file) with backend web
servers, avoiding the overhead of creating a connection for each
request. However, the number of idle persistent connections
is recommended to be set small enough considering resource
consumption [34]. Also, those persistent connections are not
always alive because they will be closed periodically to free
per-connection memory allocations [33]. Therefore, the Nginx
load balancer usually should quickly create new connections
with the backend server upon request burst when the pre-created
persistent connections are not enough. For example, if there are
only 100 persistent idle connections alive, but there come 10,000
concurrent client connections, the Nginx load balancer needs
to quickly create 9,900 new TCP connections with backend
servers.

2) HTTP/1.0, which doesn’t support persistent connections is
still in use today. We observe that there is still a lot of HTTP/1.0
traffic in the Internet according to real measurements [42], [43].
For HTTP/1.0 users, the Nginx load balancer should create a
new connection for each coming request. Although it is possible
to configure to use a persistent connection to serve HTTP/1.0
requests in the recent Nginx version, maintaining a large number
of alive persistent connections between Nginx load balancer
and the backend web servers to deal with the burst requests
is unpractical. One reason is to avoid wasting resources, since a
large number of connections will consume a lot of resources, but
the burst traffic may only last for a short period of time. Another
reason is that the persistent connections with the backend web
server have their own survival time (configurable in the config
file with default survival time to be 65 s). Those persistent
connections will be closed automatically.

The long network setup time may greatly hurt the performance
of the Nginx load balancer. To evaluate its impact, we run
an Nginx load balancer in a container on one machine and
a backend web server (also using Nginx) in one container on
another machine, and use Apache Benchmarking tool (ab) [4]
to measure the throughput of the backend web server (detailed
testbed setup is described in Section V). We use ab to send
10 K requests using 1 K concurrent connections in total (using a
short-lived connection between the client and the Nginx load
balancer), to emulate the client request burst. As shown in
Fig. 4(a), in Slim, the performance of Nginx backend server
decreases heavily because of the long network setup time,

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: SLIM AND FAST: LOW-OVERHEAD CONTAINER OVERLAY NETWORK WITH FAST CONNECTION SETUP 5

Fig. 5. Architecture of SlimFast.

achieving only about 53% throughput of tunnel-based overlay
network Weave.

Memcached: Memcached [44] is a high-performance in-
memory key-value store that widely used in datacenters [35],
[36], [37]. Real measurements in datacenters [39] report that
there are a lot of flows in Cache client/server whose size are less
than 10 KB (e.g., about 99% of flows in intra-rack and 80% of
flows in intra-datacenter) and last for about only 1 ms (e.g., about
20% of flows in intra-rack). The long connection setup time
is unfriendly to those short-lived connections in Memcached,
which may decrease the overall performance greatly. We run
a Memcached server in a container on one machine and use
mcperf [1] to issue requests to the Memcached server in a
container on another machine (detailed testbed setup is described
in Section V). We use mcperf to create 30 K connections in
total and each connection is created after previous connection
is closed. As shown in Fig. 4(b), the Memcached response rate
of Slim is only about 37% compared with tunnel-based overlay
network Weave, which is affected by the long connection setup
time.

III. DESIGN

A. Overview

SlimFast provides a low-overhead container overlay network
which directly uses the host OS socket for communication,
and provides a fast connection setup without extra communi-
cation to get the mapping between the host socket and over-
lay socket. Note that the current SlimFast design focuses on
connection-oriented sockets (e.g., TCP) for a container overlay
network. We will discuss connectionless sockets (e.g., UDP) in
Section III-C. Without explicitly specifying, in this article, sock-
ets refer to connection-oriented sockets (e.g., TCP).

SlimFast follows the same architecture as Slim, as shown in
Fig. 5. SlimFast contains three main components, 1) SlimFast-
Socket, 2) SlimFastRouter and 3) KernModule. SlimFastSocket
is a shim layer library dynamically linked with container appli-
cation binaries, intercepting applications’ socket-related system
calls such as socket(), bind(), listen(), connect(),
etc.. SlimFastRouter is a user-space process that runs in the
host namespace, establishing connections in the host stack and
passing host sockets to containers used as overlay sockets.
SlimSocket connects to the SlimRouter through inter-process
communication (IPC) socket (e.g., the implementation is to use

Unix Domain Socket) and forwards system calls to the Slim-
Router. KernModule is an optional module that can be loaded
into the OS kernel. When secure mode is on, KernModule can
track and revoke the host sockets used inside containers, and
prohibit containers’ unsafe system calls using these host sockets.

In Slim, the SlimSocket function is to establish a connection
between containers and transmit information about the server
host to client container via send. SlimRouter is accountable for
establishing the connection between hosts and returning the host
socket to SlimSocket through inter-process communication. The
socket is replaced by SlimSocket. In SlimFast, SlimFastSocket
intercepts socket system call forwarded to SlimFastRouter and
then listens for inter-process communication socket. SlimFas-
tRouter establishes the socket mapping table according to the
server container information and establishes the connection
between hosts. We gave up the process of container network
in SlimSocket, we no longer listened to the container network
socket, but listened to the inter-process communicating socket
with SlimFastRouter. SlimFastRouter establishes a connection
between hosts. According to the socket mapping table, the host
socket is returned to the server container of the corresponding
inter-process communication socket. SlimFastSocket will
overwrite the original container socket with the host socket.

Slim requires an additional container connection to connect
a host. In SlimFast, we reserve a dedicated and pre-known host
listening port. When the client container needs to establish a
connection, the client can directly establish a host connection
with the server host IP provided by IPAM and the listening port.
SlimFast relies on existing container overlay IPAM schemes
to manage the mapping between host IP and container over-
lay IP (introduced in Section II-A). The IP mapping infor-
mation can be updated in the background, which is not on
the critical path of the container connection setup and data
transmission.

We design the socket mapping table, which consists of the
server container’s IP address, port, and IPC socket. SlimFas-
tRouter utilizes this table to forward the host socket to the
server container. When the server container needs to listen,
SlimFastSocket sends its IP address and port to SlimFastRouter
through the IPC socket. SlimFastRouter binds the IPC socket of
SlimFastSocket to the IP address and port of the server container
and adds it to the mapping table. When a client connects to the
server, it sends the server container’s IP address and port to
the server’s SlimFastRouter. SlimFastRouter then utilizes the
mapping table to transfer the host socket to SlimFastSocket via
the IPC socket. The mapping table matches the server container
only to the IPC socket within the host. As a result, neither
the client nor the server container needs to be concerned with
additional network management.

B. Fast Connection Setup

In this section, we will talk about the working mechanism
of SlimFast and then supplement it with a detailed example.
Different from Slim, SlimFast can establish a connection without
extra communication between both sides. Fig. 6(b) overviews
the connection setup procedure in SlimFast. Instead of getting
port mapping information from the server before establishing
a connection, SlimFast reserves a dedicated and pre-known
host port for the container overlay network. When the server

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 6. Connection setup overview. (a) Slim. (b) SlimFast.

container creates a socket, it will store the IP address and
port of the container into the socket mapping table through
SlimFastRouter, and then enter the listening state. When a client
container connects to a server container, SlimFastSocket inter-
cepts and forwards the syscall to SlimFastRouter, which obtains
the server container’s host address using IPAM. SlimFastRouter
establishes a host connection to the server’s dedicated host port
and includes the target overlay IP/port information while doing
so. After accepting the host connection and getting the embedded
overlay IP/port information, the server SlimFastRouter passes
the host socket to the corresponding container application work-
ing as its overlay socket.

The server SlimFastRouter finds the correct container overlay
socket by maintaining a local socket mapping table. Specifically,
once the server SlimFastSocket detects the container application
starts a server socket (e.g., monitor the system call listen()), it
establishes a local connection with the SlimFastRouter via a
local inter-process communication socket. Meanwhile, it tells
the SlimFastRouter that which overlay IP/port the container
server socket is listening on. Then the SlimFastRouter inserts
an entry in its socket mapping table recording the mapping
information between the overlay IP/port and the IPC socket to
the SlimFastSocket.Next, whenever receiving a new connection,
by looking up the socket mapping table, the SlimFastRouter can
pass the host connection socket to the corresponding IPC socket
to the SlimFastSocket, and return it to the container application
as its overlay socket.

A Detailed Example of How Connection Setup Works in
SlimFast. On the client side, assume that the container TCP client
is going to make a connection with the container TCP server. As
Fig. 7 shows, it first calls the socket() to create a socket, and
then, calls the connect() to start the three-way handshake pro-
cedure. Instead of executing the original syscall, the connect()
call will be intercepted by SlimFastSocket and forwarded to
SlimFastRouter. When the container application calls connect(),
SlimFastSocket will send a request to SlimFastRouter carrying
the IP address and port number (i.e., IP 10.0.0.1 and port 80)
of the overlay server socket that the client is going to connect.
Once the server SlimFastRouter receives the connection setup
request, it parses the request message, learning that the destina-
tion server container IP is 10.0.0.1. Through overlay IPAM, the

SlimFastRouter already knows the IP address of the host (e.g.,
1.2.3.4 in Fig. 7) where the container with IP 10.0.0.1 runs on,
so it can immediately set up a host network connection with the
destination SlimFastRouter using the pre-known dedicated port
(e.g., 1,234).

After the host connection has been established, SlimFas-
tRouter sends a message that carries the server container IP/port
information (i.e., IP=10.0.0.1 and port=80) to the server
side via the host network connection and passes the host file
descriptor to the local container working as its overlay socket.

On the server side, SlimFastRouter always listens on a dedi-
cated and public port (e.g., 1,234). SlimFastSocket will monitor
(e.g., monitor the function listen()) whether a server socket starts
in a container. If a server socket starts, SlimFastSocket first
establishes a connection with SlimFastRouter via a local IPC
socket such as Unix Domain Socket (UDS). Then it sends a
register message that contains IP/port (i.e., 10.0.0.1/80) that the
container socket is listening on to SlimFastRouter via the IPC
connection. When SlimFastRouter receives a register message
from SlimFastSocket, it adds an entry to the socket mapping
table. SlimFastRouter uses the mapping table to distinguish
container overlay sockets. After SlimFastRouter accepts a host
connection from the client, it will also receive an embedded mes-
sage with the target container overlay IP/port (i.e., 10.0.0.1/80).
SlimFastRouter looks up the corresponding IPC socket in the
mapping table, and via the corresponding IPC socket (e.g., UDS
8), it passes the host socket file descriptor to the target container
as its overlay socket. After that, the connection setup is done and
the containers on both sides can communicate directly via host
sockets without extra packet transformation.

C. Connectionless Protocol

We further extend the connectionless protocol with a
pre-defined listening port and hash tables. Using host sock-
ets directly with connectionless protocols presents a problem
in which the client container cannot determine the host port
used by the server container and, therefore, cannot send data
directly. In connectionless protocols, it is unnecessary to waste
at least one round-trip matching time by informing the server
container of the port through connection establishment. Instead,
by inserting a hash value into the UDP packet, SlimFast can
directly transfer the packet to the specified server container using
a pre-defined listening port. This container matching process
is completed in the first round-trip time, without wasting any
bandwidth.

1) Hash Table Structure: In connectionless protocol, Slim-
Fast will directly create host sockets. Both the client and server
maintain their own hash tables and use their own hash computa-
tion methods. Fig. 8(b) and (c) display the hash table structures
maintained by the server and client, respectively. The server hash
table stores the hash value of the server container, as well as the
IP address and port of the server host. This allows the client to
translate container information to host information. Similarly,
the client hash table stores the hash value of the client container,
IP address, and port of the client host.

2) How Connectionless Protocol Works in SlimFast: The
client container calls the socket(), it will directly create the host
socket. When sending the packet, SlimFastSocket intercepts the
system call, calculates the hash value of the server container’s

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: SLIM AND FAST: LOW-OVERHEAD CONTAINER OVERLAY NETWORK WITH FAST CONNECTION SETUP 7

Fig. 7. Example of the detailed procedure in creating a container TCP connection using SlimFast.

IP address and port, and places it into the packet. SlimFast then
checks the server hash table to see if the hash value exists. If
it does not, SlimFast directly queries the IPAM to obtain the
corresponding IP address of the server host. Finally, the packet
is sent to the listening port of the server host.

On the server side, SlimFastRouter parses the hash value
and searches the socket mapping table to determine the host
IP address and port used by the server container. It then inserts
the hash value of the client.s information and the host IP/port
into the client hash table. The hash value is included in the
packet and sent through inter-process communication to the
server container. The server container parses the hash value and
finds the corresponding client host IP/port in the client hash
table. When the server container needs to reply to data, it sends
it directly to the corresponding client host. Additionally, the
server container includes the hash value of the overlay IP/port
in the packet when sending it.

After receiving the packet, the client host updates the host
port corresponding to the hash value in the server hash table.
When the client needs to send data to the server container again,
it queries the server hash table for the corresponding host IP
address and port.

During the first round-trip time, the client must repeat the
above process since it does not initially know the host port
associated with the server container. After receiving the first data
packet from the server container, the client can query the server
hash table for the host information corresponding to the server
container, and then directly send data to the host IP address and
port.

3) End Host Logic: The server container creates the host
socket and waits for incoming packets, which can be received
directly from clients or through SlimFastRouter. When the server
receives packets from SlimFastRouter, it parses the hash value
to determine the corresponding client host IP/port, which is
then used as the sending address. When sending data, the server
container calculates its IP address and port as the hash value and
adds it to the packet. The client can locate the server container
using the hash value. If the host socket directly receives data,
the hash value will be resolved and discarded.

SlimFastRouter is responsible for searching the server con-
tainer and providing it with information about the client host

IP address. When SlimFastRouter receives packets, it parses the
hash value and finds the IP address and port of the corresponding
server host in the server hash table. SlimFastRouter then calcu-
lates the IP address and port of the client host from the data packet
as a hash value, adds it to the client hash table, and forwards the
data packet with the hash value to the server container.

The client maintains a server hash table that is built from both
IPAM information and received packet host information. The
hash value of the server overlay IP/port is added to packets, and
the server hash table is queried. If the hash value is not found,
IPAM is used to search for the host IP address. The packet is then
transmitted directly to the host IP address with the pre-defined
listening port. The client writes the server host port into the
server hash table after receiving data packets and parsing the
hash value. When the hash value is queried, it can be directly
sent to the host IP address and port corresponding to the server
container.

D. Security Policy

SlimFast directly uses the host socket for container commu-
nication as Slim, thus keeping low-overhead during data trans-
mission. Also, similar as Slim, SlimFast can configure flexible
control-plane (e.g., access control over overlay packet header
fields) or data-plane policies (e.g., rate limiting and quality
of service, etc.) as original tunnel-based overlay solution, by
inserting rules in the SlimFastRouter. Moreover, through
KernModule, SlimFast can maintain the same security model
as today’s tunnel-based container overlay networks. In SlimFast,
we extend the socket mapping table maintained in TCP and UDP
service, which can complete the packet-level flow control policy.
After we use the host socket, the packet will be processed in the
host. Slim’s security policy will not be able to perform packet-
level detection on containers that use host sockets, because the
host address used by the restricted container is not known. After
the security mode is enabled, SlimFast maintains the socket
mapping table on the server side and adds the corresponding
host IP address and port into it. When the specified container
IP address and port need to be hashed, we can find the host IP
address and port through the socket mapping table to replace the
container information, thus completing the packet-level filtering.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 8. (a) Socket mapping table. (b) Server hash table. (c) Client hash table.

IV. IMPLEMENTATION

A. Overview

We implement SlimFast on Linux OS and Docker with about
3.5 K lines of C++ code, on top of the code-base of Slim. We
use an overlay network solution, Weave, to manage IP addresses
for containers. Unix domain socket is used as the IPC socket for
communication between the SlimFastSocket and the SlimFas-
tRouter. The structure of SlimFast’s socket mapping table in our
implementation is shown in Fig. 8.

B. Reuse Component

SlimFastSocket uses LD_PRELOAD to dynamically link to
the application binary. SlimFastSocket implements a set of
socket APIs such as socket(), bind(), listen(), etc.. SlimFas-
tRouter uses a system call send_msg() to send a host socket to
SlimFastSocket in both non-secure and secure mode. We reused
Slim’s security module. In secure mode, SlimFastSocket sends
the socket index on container application to SlimFastRouter
after it receives the host socket. Then KernModule stores the
socket index and the PID of container application in the list. In
SlimFastSocket, maintain a mapping table of file descriptors.
When using non-blocking IO to listen for a container network
socket, we intercept the existing epoll call and replace it with
an IPC socket. When using connect, we will replace it directly
with the host socket, no longer requiring the container socket.

C. Address Translation

Weave’s IPAM does not provide an interface for upper-layer
calls to retrieve the host IP address that corresponds to a con-
tainer IP address. To retrieve this information, we can query
Weave’s DNS (Domain Name System) using a command. In
Weave’s DNS, the IP addresses of containers and hosts are
mapped. SlimFast extracts the IP addresses of containers and
hosts for mapping and saves them in entries. When translating
overlay IP, SlimFast can directly look up the table. The whole
process can be updated in the background using a separate pro-
cess, which has no effect on the container connection. Similarly,
other container overlay networks also have interfaces that obtain
the mapping between the overlay IP addresses and the host
IP addresses. During initialization, SlimFast write the host IP
address corresponding to the subnet in advance.

D. Socket Mapping Table

The socket mapping table is used within the server to map the
server container and UDS. During connection establishment,
the SlimFastSocket uses UDS to connect to SlimFastRouter.

SlimFastSocket passes the ip and port of the container to Slim-
FastRouter via send_msg when bind is used on the server
container. SlimFastRouter inserts the ip and port of the server
container and the corresponding UDS into the socket mapping
table. When the host connection is established and the server
container ip address and port are received, SlimFastRouter
queries the socket matching table and uses epoll notification
to replace the host socket to the specified container.

E. Optimized Connection Establishment

To avoid the high overhead of frequently creating and termi-
nating threads, SlimFastRouter creates a thread pool, enabling
it to process routines in parallel. The thread pool consists of
two main parts: Processing inter-process requests and estab-
lishing connections. After SlimFastRouter starts up, it uses
multithreading to process the requests of SlimFastSocket, while
interprocess connections and requests are processed in parallel.
SlimFastRouter optimizes connection requests by using multiple
pre-reserved ports and multiple threads. To further improve
processing efficiency, SlimFast uses non-blocking I/O to listen
on interprocess sockets and network sockets. SlimFastSocket
uses epoll to monitor inter-process communication and waits
for SlimFastRouter to wake up after completing the connection
establishment. Similarly, SlimFastRouter uses epoll to listen on
multiple pre-reserved ports until the client requests a wake-up
call.

V. EVALUATION

Experimental Setup: Our experimental setup consists of
2 physical machines: machine A (Linux version 5.4.0-137-
generic) and machine B (Linux version 4.15.0-142-generic). The
machine A has 2 CPUs (Intel Xeon CPU E5-2650 0 @ 2.00 GHz)
and each CPU has 8 physical cores. The machine B also has 2
CPUs (Intel Xeon CPU E5-2620 v3 @ 2.40 GHz) and each
CPU has 6 physical cores. We set the CPU frequency governor
as “performance” in all of the experiment. As for the network
link, we directly connect 2 hosts with 10 Gbps NIC.

A. Microbenchmarks

In this section, we measure the connection setup time of TCP
applications with a host network, overlay network, Slim and
SlimFast, respectively. Then, we use iperf [5] to evaluate the
throughput, also monitor the CPU utilization both in client and
server side. Finally, we test the round-trip time(RTT) delay under
connectionless protocol.

Connection Setup Time Benchmarking: We run a TCP client
process in one container and a TCP server process in another
container. Those 2 containers are started in machine A and
machine B, respectively. The TCP client process creates one
connection, recording the connection setup time and then exit
immediately. The system time at the beginning of connection
construction is recorded, and the system time after connection
construction is recorded. According to the difference between
the two, we can get the time required for the whole process of
connection construction. To avoid accidental errors, We test the
above process 10 K times in total.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: SLIM AND FAST: LOW-OVERHEAD CONTAINER OVERLAY NETWORK WITH FAST CONNECTION SETUP 9

Fig. 9. TCP connection setup time.

Fig. 10. Time cost of table-lookup at scale (1K entries).

Results: As shown in Fig. 9, the 99.5_th percentile connec-
tion setup time with a host network, Weave, SlimFast-NonSec,
SlimFast-Sec, Slim-NonSec and Slim-Sec are 284 µs, 440 µs,
720 µs, 842 µs, 1343 µs and 1557 µs, respectively. Slim takes
much longer time than other ways because it needs extra com-
munication to learn the mapping information from the remote
side. SlimFast achieves a great deal better performance than
Slim because it removes the extra communication but lookups
the mapping information locally. The secure mode requires
more time cost than non-secure mode is because it needs to
do some other operations (e.g., communicating with the Kern-
Module). In SlimFast, the interprocess communication between
SlimFastSocket and SlimFastRouter requires additional time
consumption, causing a little of performance loss comparing
with Weave. The long packet processing path (i.e., each packet
traverses the network stack twice) of Weave brings a degree of
performance loss comparing with the host network.

Mapping Table Lookup Time: SlimFast removes the extra
communication while it lookups the mapping information in a
local mapping table. SlimFast adds a new entry into the mapping
table while a new TCP server starts listening in container. A
number of containers may be deployed in one host, which leads
to a large number of entries in the mapping table. We use a
hash table to store the mapping entries as it provides fast lookup
operations.

In SlimFast, lookuping an entry in the mapping table requires
minimal overhead. In this experiment, we run 1 K TCP servers
inside one container (on machine B). Accordingly, SlimFast
adds 1,000 entries into the mapping table. We then run a TCP
client in another container (on machine A). This TCP client
randomly selects one server out of one thousand and then makes
a connection with that server. We test 10 K times in total. On each
connection setup time stage, SlimFast lookups a corresponding
entry in the mapping table and we record the time cost that table
lookup consumes.

Results: As shown in Fig. 10, the 95_th percentile time
consumption is 2 µs. It shows that SlimFast can easily adapt
to large-scale environment.

Throughput and CPU Utilization: We run an iperf client and
a server on machine A and machine B respectively. The iperf
client creates a TCP flow with server, measuring the maximum

Fig. 11. Single TCP flow throughput with Weave, Slim and SlimFast.

Fig. 12. Connectionless protocol communication delay.

achievable bandwidth on this link. We also use mpstat tool [2]
to monitor the CPU utilization of the iperf client and server.

Results: Fig. 11 shows that Weave, Slim and SlimFast achieve
the throughput of 6.95 Gbps, 9.41 Gbps and 9.41 Gbps, re-
spectively. Weave hurts the performance because it requires
extra tunneling encapsulation. As shown in Fig. 13, in client
side, SlimFast, Slim and Weave use 0.33, 0.33 and 1.23 CPU
core, respectively, while 0.47, 0.46 and 1.49 CPU core in server
side. In Weave, the CPU utilization in softirq increases greatly
since the tasks of extra packet transformation are offloaded to
per-core dedicated softirq thread. In Slim and SlimFast, the CPU
utilization of the server is higher than that of the client, which
mainly comes from the communication transmission between
processes. They both need to convert the container information
into the host information through inter-process communication.

Connectionless Protocol Performance: The iperf approach
is not used in testing connectionless protocol performance,
because the iperf tool does a pre-build connection when testing
connectionless protocol performance. We choose to record the
client’s sendto and recvfrom completion time and record
the completion time to compare the host, SlimFast, and Weave
network. The communication method we use is that after the
client sends the packet, the server receives the data and re-sends it
to the client. To avoid accidental errors, 1 k rounds were continu-
ously tested, with the client changing sockets every round and the
server running all the time. The packet size of each experiment
is 1 KB, and each round will cycle our communication mode
1 K times.

Results: Fig. 12 shows that the communication latency un-
der the host communication, SlimFast, and Weave networks is
177.64us, 188.57us, and 256.2us. The performance of SlimFast
is similar to that of the host. This is because the host operat-
ing system socket is directly used for communication, but not
completely consistent because the hash value calculation and
address replacement are added. Weave’s performance is down
because it uses container network sockets and is wrapped twice.

B. Applications

We apply SlimFast to 2 real-world applications: Nginx and
Memcached. There exits several similar container overlay net-
work solutions, e.g., Weave [18], Calico [17], Flannel [3], etc.. In

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 13. CPU utilization with Weave, Slim and SlimFast. (a) iperf client,
(b) iperf server.

Fig. 14. (a) Throughput of Nginx server with 10 K concurrent visits, (b)
response rate of Memcached server while using short-lived connection.

this article, we choose Weave as the benchmark. Our evaluation
uses SlimFast and Slim running in non-secure mode.

1) Nginx-Based Load Balancer: Setup. We deploy a Nginx
proxy on machine A and a Nginx web server as the upstream
server on machine B. We choose ApacheBench (ab) as the
benchmarking tool and choose throughput (requests/second) as
the evaluating indicator. We set up a HTML file with size of
1 KB on the Nginx backend server. In Nginx proxy, we set
the configuration parameters keepalive=100 (i.e., the maximum
number of idle keepalive connections with upstream servers)
and keepalive_requests=100 (i.e., maximum number of requests
that can be served through one keepalive connection). We set the
number of Nginx worker process to 1 both in Nginx proxy and
upstream server.

Performance Under High Concurrency. We use ab tool to
simulate 1 K of concurrent users, requesting the HTML file
with size of 1 KB. Each user sends one request using short-lived
connection, and the ab tool generates 10 K requests in total. In
such a scenario, the Nginx proxy needs to create a lot of new
TCP connections with the upstream server because the number
of pre-created persistent connections between Nginx proxy and
upstream web server is not enough.

Results. As shown in Fig. 14(a), SlimFast achieves the
throughput of about 5,987 requests/second while Slim achieves
about 3,171 requests/second. SlimFast improves the throughput
of Nginx-based-proxy by about 0.9x. The main reason of poor
performance while using Slim as it spends too much time on
connection setup. SlimFast resolves this problem, thus it can
attain better performance.

Performance Under Low Concurrency. In this experiment, we
use ab tool to simulate a single user, requesting the HTML file
10 K times in total. The frequency of making TCP connection
between proxy and upstream server decreases greatly in this
scene.

Results. As shown in Fig. 15(a), the throughput of Nginx
server is 2,250, 2,752, and 2,753 requests/second while using
Weave, Slim and SlimFast, repectively. The high-overhead of

Fig. 15. (a) Throughput of Nginx server with 1 connection and proccessing10
K requests in total, (b) response rate of Memcached server while using persistent
connection.

packet encapsulation in Weave leads to the decline of perfor-
mance. Slim and SlimFast both avoid additional encapsulation.

2) Memcached: Setup: We deploy a Memcached server on
machine B. Then, we run a Memcached benchmarking tool,
mcperf [1], to evaluate the performance of Memcached server. In
this case we choose the response rate as the evaluating indicator.

Short-Lived Connections. In this experiment, we use mcperf
to create 30 K TCP connections in total. After the connection
has established, it sends one request the item sizes derived from
a uniform distribution in the interval of [1, 1,024) bytes to the
Memcached server. Note that in this scene, each connection is
created after previous connection is closed.

Results. As shown in Fig. 14(b), SlimFast improves the re-
sponse rate Memcached by about 2.2x, as SlimFast achieves the
response rate of 1803 responses/second while Slim archieves
566 responses/second. The reason why SlimFast gets better
performance than Slim is because that the time SlimFast saved
can be used to complete more requests. SlimFast is 1,803 re-
sponses/second and Weave is 1,523 responses/second. SlimFast
has a higher throughput than Weave. This is because in mem-
cached, query requests are carried out between containers and
the connection length is short. Also, the connection is established
only after the previous connection has been closed, so it is
more accurate to see the effect of connection speed and stack
encapsulation time.

Persistent Connections. We use persistent connections be-
tween mcperf and the Memcached server in this experiment.
The mcperf creates one persistent connection, sending 30 K
requests to server in total and the item size derives from a uniform
distribution in the interval of [1, 1024) bytes.

Results. As shown in Fig. 15(b), the response rates of Mem-
cached server are 10,558, 20,217 and 20,227 responses/second
while using Weave, Slim and SlimFast, respectively. SlimFast im-
prove the response rate of Memcached server by about 92% com-
paring whith Weave. It is resonable that SlimFast just 22% (Ng-
inx) / 92% (Memcached) better than regular container-overlays
for long-lived connections. For Nginx, the topology setup is:
ab ↔ Nginx-based-proxy ↔ Nginx. Http requests/responses are
first processed by ab/Nginx-based-proxy/Nginx processes, then
traverse the OS network stack.

We also evaluate the Nginx server performance in the case of
container to container. We start a container running ab tool in
machine A and a container running Nginx server in machine B.
Similar to previous Nginx-based proxy experiment, the ab tool
will create a single persistent connection, requesting the HTML
file 10 K times in total. The throughput is 3,880, 5,918 and 5,929

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: SLIM AND FAST: LOW-OVERHEAD CONTAINER OVERLAY NETWORK WITH FAST CONNECTION SETUP 11

requests/s while using Weave, Slim and SlimFast, respectively.
SlimFast is 53% better than Weave.

VI. DISCUSSION AND LIMITATION

General Mechanisms Behind. SlimFast’s mechanisms are
useful for other systems design beyond the specific problem
it addresses. The method of locally differentiating container
sockets on the server side can be applied by other overlay-
network systems (using a similar way), and the data structure
and mechanism used in SlimFast to guarantee good performance
can also benefit other connection/packet dispatch systems.

NICs. Some commercial NICs (e.g., ConnectX-4) offer Vxlan
offload functionality, which segments packets carrying the
Vxlan header after encapsulation. However, this offload function
requires the inclusion of the container IP header, Ethernet header,
and VxLan header when encapsulating packets. This limita-
tion reduces the number of containers that can be created and
maintained due to on-chip space constraints. Furthermore, traffic
management issues arise when managing container-orchestrated
networks. While customized hardware can potentially solve
these issues, this requires a design that strongly couples with the
container orchestration network. Additionally, offloading Vxlan
encapsulation is not essential for the container overlay network,
and the network adapter’s limited traffic management functions
prevent the customization of traffic management policies.

VII. RELATED WORK

Optimizations of Virtual Networking: There is a large body of
work targeting at optimizing the virtual networking. Nam et al.
proposed BASTION [48], a network stack for container network,
which can enhance the security of container and improve the per-
formance of container communications to a certain extent. BrFu-
sion [50], a method that allows containers inside a VM to directly
use the host layer networking stack. Although BASTION and
BrFusion can improve the performance of container network,
but neither BASTION nor BrFusion supports container overlay
network. FreeFlow [49] provides a virtual RDMA networking
solution for containers. Socket-outsourcing [51] provides fast
networking for hosted virtual machines(VMs).

Optimizations of Packet Processing: With the improvement
of network device performance, one CPU core may be inad-
equate, especially in container overlay network because of its
high-overhead per-packet encapsulation. Receive Side Scaling
(RSS) [52], a technique designed for multi-processor systems
that aims to increase parallelism and improve performance of
packet processing. With RSS enabled, the NIC will distribute
different packets to different CPU cores, which improves perfor-
mance of packet processing. Relatived to RSS, Receive Packet
Steering (RPS) [53] can provide the same functionality as RSS
but it is implemented in software manner. As observed by [22],
RSS or RPS doesn’t work effectively in container overlay net-
work.

VIII. CONCLUSION

Container overlay network has become the de facto net-
working technique for distributed containers communication
in cloud, yet it imposes significant overhead. We design and

implement SlimFast, a low-overhead container overlay network
with fast connection setup. SlimFast directly passes host socket
to containers and uses reserved server port and local socket
mapping table to remove extra round-trip communication during
connection setup. Thus it keeps low-overhead and fast in both
data transmission and connection setup. SlimFast significantly
improves the throughput of Nginx proxy and Memcached server
and also reduces the CPU utilization. SlimFast’s source code is
publicly available at https://github.com/zxzx9898/SlimFast.

REFERENCES

[1] twemperf, 2014. [Online]. Available: https://github.com/twitter-archive/
twemperf

[2] mpstat, 2022. [Online]. Available: https://man7.org/linux/man-pages/man1/
mpstat.1.html

[3] Flannel, 2022. [Online]. Available: https://github.com/flannel-io/flannel/
[4] ab, 2012. [Online]. Available: https://httpd.apache.org/docs/2.4/programs

/ab.html
[5] iperf, 2014. [Online]. Available: https://iperf.fr/
[6] VxLan, 2014. [Online]. Available: https://datatracker.ietf.org/doc/html/

rfc7348
[7] nginx - Docker Hub, 2021. [Online]. Available: https://hub.docker.com/

_/nginx
[8] SlimFast code base, 2023. [Online]. Available: https://github.com/

zxzx9898/SlimFast
[9] Containers in Google cloud, 2021. [Online]. Available: https://cloud.

google.com/containers
[10] twemproxy, 2022. [Online]. Available: https://github.com/twitter/

twemproxy
[11] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,” in

Proc. ACM SIGCOMM Conf. Internet Meas. Conf., 2011, pp. 295–312.
[12] K. Jang, S. Han, S. Han, S. B. Moon, and K. Park, “SSLShader: Cheap

SSL acceleration with commodity processors,” in Proc. 8th USENIX
Conf. Netw. Syst. Des. Implementation, 2011, pp. 1–14.

[13] R. Nishtala et al., “Scaling memcache at Facebook,” in Proc. 10th USENIX
Symp. Netw. Syst. Des. Implementation, 2013, pp. 385–398.

[14] E. Jeong et al., “mTCP: A highly scalable user-level TCP stack for
multicore systems,” in Proc. 11th USENIX Symp. Netw. Syst. Des.
Implementation, 2014, pp. 489–502.

[15] S. Thomas, L. Ao, G. M. Voelker, and G. Porter, “Particle: Ephemeral
endpoints for serverless networking,” in Proc. 11th ACM Symp. Cloud
Comput., 2020, pp. 16–29.

[16] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study
of container networks,” in Proc. IEEE Conf. Comput. Commun., 2018,
pp. 189–197.

[17] Calico, 2022. [Online]. Available: https://www.projectcalico.org/
[18] Weave, 2022. [Online]. Available: https://www.weave.works/
[19] Docker overlay network, 2021. [Online]. Available: https://docs.

docker.com/network/network-tutorial-overlay/#use-the-default-overlay-
network

[20] S. Fouladi et al., “Encoding, fast and slow: Low-latency video processing
using thousands of tiny threads,” in Proc. 14th USENIX Symp. Netw. Syst.
Des. Implementation, 2017, pp. 363–376.

[21] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A serverless
video processing framework,” in Proc. ACM Symp. Cloud Comput., 2018,
pp. 263–274.

[22] J. Lei, K. Suo, H. Lu, and J. Rao, “Tackling parallelization challenges
of kernel network stack for container overlay networks,” in Proc. 11th
USENIX Workshop Hot Topics Cloud Comput., 2019, Art. no. 9.

[23] D. Zhuo et al., “Slim: OS kernel support for a low-overhead container
overlay network,” in Proc. 16th USENIX Symp. Netw. Syst. Des.
Implementation, 2019, pp. 331–344.

[24] HPE EZMERAL CONTAINER PLATFORM, 2021. [Online]. Available:
https://www.hpe.com/us/en/solutions/container-platform.html

[25] Titus, “The Netflix container management platform, is now open source,”
2021. [Online]. Available: https://netflixtechblog.com/titus-the-netflix-
container-management-platform-is-now-open-source-f868c9fb5436

[26] How yelp runs millions of tests every day, 2021. [Online]. Available:
https://engineeringblog.yelp.com/2017/04/how-yelp-runs-millions-of-
tests-every-day.html

[27] Containers at Google, 2021. [Online]. Available: https://cloud.google.
com/containers

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

https://github.com/zxzx9898/SlimFast
https://github.com/twitter-archive/twemperf
https://github.com/twitter-archive/twemperf
https://man7.org/linux/man-pages/man1/mpstat.1.html
https://man7.org/linux/man-pages/man1/mpstat.1.html
https://github.com/flannel-io/flannel/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://iperf.fr/
https://datatracker.ietf.org/doc/html/rfc7348
https://datatracker.ietf.org/doc/html/rfc7348
https://hub.docker.com/_/nginx
https://hub.docker.com/_/nginx
https://github.com/zxzx9898/SlimFast
https://github.com/zxzx9898/SlimFast
https://cloud.google.com/containers
https://cloud.google.com/containers
https://github.com/twitter/twemproxy
https://github.com/twitter/twemproxy
https://www.projectcalico.org/
https://www.weave.works/
https://docs.docker.com/network/network-tutorial-overlay/#use-the-default-overlay-network
https://docs.docker.com/network/network-tutorial-overlay/#use-the-default-overlay-network
https://docs.docker.com/network/network-tutorial-overlay/#use-the-default-overlay-network
https://www.hpe.com/us/en/solutions/container-platform.html
https://netflixtechblog.com/titus-the-netflix-container-management-platform-is-now-open-source-f868c9fb5436
https://netflixtechblog.com/titus-the-netflix-container-management-platform-is-now-open-source-f868c9fb5436
https://engineeringblog.yelp.com/2017/04/how-yelp-runs-millions-of-tests-every-day.html
https://engineeringblog.yelp.com/2017/04/how-yelp-runs-millions-of-tests-every-day.html
https://cloud.google.com/containers
https://cloud.google.com/containers

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

[28] Open vSwitch, 2021. [Online]. Available: https://www.openvswitch.org/
[29] Virtual ethernet device (veth), 2021. [Online]. Available: https:

//man7.org/linux/man-pages/man4/veth.4.html
[30] Nginx, 2021. [Online]. Available: https://www.nginx.com/
[31] R. Li, Y. Li, and W. Li, “An integrated load-balancing scheduling

algorithm for Nginx-based web application clusters,” J. Phys.: Conf. Ser.,
vol. 1060, no. 1, 2018, Art. no. 012078.

[32] Z. Wen, G. Li, and G. Yang, “Research and realization of Nginx-based
dynamic feedback load balancing algorithm,” in Proc. IEEE 3rd Adv. Inf.
Technol. Electron. Autom. Control Conf., 2018, pp. 2541–2546.

[33] 2021. [Online]. Available: http://nginx.org/en/docs/http/ngx_http_core_
module.html

[34] 2021. [Online]. Available: http://nginx.org/en/docs/http/ngx_http_
upstream_module.html

[35] D. Cotroneo, R. Natella, and S. Rosiello, “Dependability evaluation of
middleware technology for large-scale distributed caching,” in Proc.
IEEE 31st Int. Symp. Softw. Rel. Eng., 2020, pp. 218–228.

[36] J. Yang, Y. Yue, and K. Rashmi, “A large scale analysis of hundreds
of in-memory cache clusters at Twitter,” in Proc. 14th USENIX Symp.
Operating Syst. Des. Implementation, 2020, pp. 191–208.

[37] W. Zhang, J. Hwang, T. Wood, K. Ramakrishnan, and H. Huang, “Load
balancing of heterogeneous workloads in memcached clusters,” in Proc.
9th Int. Workshop Feedback Comput., 2014.

[38] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf. Internet
Meas., 2010, pp. 267–280.

[39] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM Conf. Special Int.
Group Data Commun., 2015, pp. 123–137.

[40] Y. Moon, S. Lee, M. A. Jamshed, and K. Park, “AccelTCP:
Accelerating network applications with stateful TCP offloading,” in
Proc. 17th USENIX Symp. Netw. Syst. Des. Implementation, 2020,
pp. 77–92.

[41] Why persistent connections are bad, 2021. [Online]. Available:
https://meta.wikimedia.org/wiki/Why_persistent_connections_are_
bad#Why_persistent_connections_are_bad

[42] Shodan, 2021. [Online]. Available: https://www.shodan.io/
[43] Censys, 2021. [Online]. Available: https://censys.io/
[44] Memcached, 2021. [Online]. Available: https://memcached.org/
[45] Docker, 2021. [Online]. Available: https://www.docker.com/
[46] Network address translation (NAT), 2021. [Online]. Available:

https://tools.ietf.org/html/rfc2663
[47] Linux network namespace, 2021. [Online]. Available: https:

//man7.org/linux/man-pages/man7/network_namespaces.7.html
[48] J. Nam, S. Lee, H. Seo, P. Porras, V. Yegneswaran, and S. Shin, “BASTION:

A security enforcement network stack for container networks,” in Proc.
USENIX Annu. Tech. Conf., 2020, pp. 81–95.

[49] D. Kim et al., “FreeFlow: Software-based virtual RDMA networking
for containerized clouds,” in Proc. 16th USENIX Symp. Netw. Syst. Des.
Implementation, 2019, pp. 113–126.

[50] M. Bacou, G. Todeschi, D. Hagimont, and A. Tchana, “Nested
virtualization without the nest,” in Proc. 48th Int. Conf. Parallel Process.,
2019, pp. 1–10.

[51] H. Eiraku, Y. Shinjo, C. Pu, Y. Koh, and K. Kato, “Fast networking with
socket-outsourcing in hosted virtual machine environments,” in Proc.
ACM Symp. Appl. Comput., 2009, pp. 310–317.

[52] Receive Side Scaling (RSS), 2021. [Online]. Available: https:
//www.kernel.org/doc/Documentation/networking/scaling.txt

[53] Receive packet steering (RPS), 2021. [Online]. Available: https:
//lwn.net/Articles/362339/

[54] Slim kernel module, 2021. [Online]. Available: https://github.com/
danyangz/Slim/tree/master/kern_module

Fusheng Lin received the master’s degree in com-
puter science from Hunan University, in 2022. He is
currently working with Tencent. His research inter-
ests in computer networking and networked system.

Xin Zhang received the bachelor’s degree in network
engineering from the Hunan Institute of Engineering,
in 2020. He is currently working toward the master’s
degree with Hunan University. His research interests
include docker, congestion control, and In-network
processing.

Guo Chen received the PhD degree in computer
science from Tsinghua University, in 2016. Before
joining Hunan University, he was an associate re-
searcher with Microsoft Research Asia from 2016
to 2018. He is currently a professor with Hunan
University. His current research interests lie broadly
in networked systems and with a special focus on data
center networking.

Li Chen received the BE degree (Hons.) in electronic
and computer engineering with a minor in mathe-
matics and the MPhil degree from The Hong Kong
University of Science and Technology (HKUST), in
2011 and 2013, respectively. He is currently work-
ing toward the PhD degree with the Department of
Computer Science and Engineering, HKUST. His
currently works on topics in systems, networking and
cybersecurity research with Zhongguancun Labora-
tory.

Kenli Li (Senior Member, IEEE) received the PhD
degree in computer science from the Huazhong Uni-
versity of Science and Technology, Wuhan, China, in
2003. He has published more than 200 research ar-
ticles in international conferences and journals, such
as IEEE Transactions on Knowledge and Data En-
gineering (TKDE), IEEE Transactions on Computers
(TC), IEEE Transactions on Parallel and Distributed
Systems (TPDS), and International Conference on
Parallel Processing (ICPP). His research interests in-
clude parallel computing, high-performance comput-

ing, and grid and cloud computing. He currently serves on the editorial board
for the IEEE Transactions on Computers (TC).

Hongbo Jiang (Senior Member, IEEE) received the
PhD degree in computer science from Case Western
Reserve University, Cleveland, Ohio, in 2008. He is
currently a full professor with the College of Com-
puter Science and Electronic Engineering, Hunan
University, Changsha, China. Previously, he was a
professor with the Huazhong University of Science
and Technology. His research concerns computer
networking, especially algorithms and protocols for
wireless and mobile networks. He is the editor for
the IEEE/ACM Transactions on Networking, and the

associate editor for the IEEE Transactions on Mobile Computing and IEEE
Internet of Things Journal. He is an elected fellow of Institution of Engineering
and Technology (IET) and fellow of British Computer Society (BCS).

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 19,2024 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

https://www.openvswitch.org/
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://www.nginx.com/
http://nginx.org/en/docs/http/ngx_http_core_module.html
http://nginx.org/en/docs/http/ngx_http_core_module.html
http://nginx.org/en/docs/http/ngx_http_upstream_module.html
http://nginx.org/en/docs/http/ngx_http_upstream_module.html
https://meta.wikimedia.org/wiki/Why_persistent_connections_are_bad#Why_persistent_connections_are_bad
https://meta.wikimedia.org/wiki/Why_persistent_connections_are_bad#Why_persistent_connections_are_bad
https://www.shodan.io/
https://censys.io/
https://memcached.org/
https://www.docker.com/
https://tools.ietf.org/html/rfc2663
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://lwn.net/Articles/362339/
https://lwn.net/Articles/362339/
https://github.com/danyangz/Slim/tree/master/kern_module
https://github.com/danyangz/Slim/tree/master/kern_module

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

