
Towards Stateless RNIC for Data Center Networks
Pulin Pan
Guo Chen∗

Xizheng Wang
{panpulin,guochen,xzwang}@hnu.edu.cn

Hunan University

Huichen Dai
Bojie Li

Binzhang Fu
Kun Tan

{daihuichen,libojie2,fubinzhang,kun.tan}@huawei.com
Huawei

ABSTRACT
Because of small NIC on-chip memory, the massive connec-
tion states maintained on Remote Direct Memory Access
(RDMA) NIC (RNIC) significantly limit its scalability. When
the number of concurrent connections grows, RNICs have to
frequently fetch connection states from host memory, lead-
ing to dramatic performance degradation. In this paper, we
propose StaR, which fundamentally solves this scalability
issue by making RNIC stateless. Leveraging the asymmetric
communication pattern in data center applications, the StaR
RNIC stores zero connection-related states by moving all the
connection states to the other end. Through careful design,
StaR RNICs can maintain unchanged RDMA semantics and
avoid security issues even when processing traffic statelessly.
Preliminary simulation results show that StaR can improve
the aggregate throughput by more than 160x (stress test) and
4x (application) compared to original RNICs.

KEYWORDS
RDMA, Scalability, Stateless RNIC, Data Center Networks

1 INTRODUCTION
With the increasingly stringent demand on low-latency and
high-bandwidth, Remote Direct Memory Access (RDMA) has
been widely deployed in data center networks (DCNs) [1].
RDMA1 offers superior performance than traditional TCP/IP
by implementing the entire network stack in hardware net-
work interface card (NIC), letting applications directly access
remote memory, largely bypassing CPU.
Existing RDMA NIC (RNIC), however, needs to maintain

massive connection related context states to complete the
RDMA stack processing. Specifically, for each RDMA con-
nection2, RNIC has to store its memory-related states (e.g.,
page size, address translation table) and networking-related
states (e.g., transport states and packet header information).
∗Corresponding author.
1In this paper, RDMA refers to RoCEv2 [2] as it is the de facto standard in
current DCN [1].
2Though RDMA provides Unreliable Datagram (UD) transport for connec-
tionless communication, it is rarely used in DCN because UD does not
support reliable transmission and congestion control.

Since NIC hardware has very limited on-chip memory (e.g.,
a few MBs), such states greatly limit RNIC’s scalability. Our
testbed measurements (Fig. 1) show that a typical RNIC can
only support less than 300 concurrent connections while
keeping the performance.

0

30

60

90

40 160 280 400 520 640 760 880

R
at

e
(m

ill
io

n
s/

s)

of concurrent connections

Application throughput PCIe read

Figure 1: RNIC performance collapses due to high
memory footprint per connection (PCIe read indi-
cates NIC fetching states from host memory). Experi-
ment Settings: Four client machines initiating RDMA
WRITEs to one server machine through multiple con-
current reliable connections (one outbounding 8-byte
WRITE on each connection). All machines are con-
nected to a 100Gbps switch with Mellanox CX4 NICs.

Although above problem has been discovered for a long
time and attracted much attention in the community [3–
7], in a strict sense, it still remains unsolved yet. Previous
works either try to mitigate it (e.g., using large memory
pages [3] or connection grouping [7]) or work around it (e.g.,
using unreliable datagram [5]), all requiring application’s
collaborative change3.

In this work, we aim to fundamentally solve above dilemma
by Stateless RNIC (StaR), which is a novel RNIC that offers
ultra-high scalability while being transparent to applications
(except specifying the stateless side during connection setup).
By moving states to the other communication side, a StaR NIC
can maintain zero connection-related states while all the
RDMA data plane processing is still done by NIC hardware.
Specifically, during connection setup, two StaR communica-
tion sides can negotiate on where to maintain the connec-
tion states. The stateless side then relies on the connection
3We note that there are also many middle layers providing communication
interface on top of the original RDMA verbs (e.g., [8, 9]). To be general, we
regard all the softwares that use the RDMA verbs as RDMA applications.

57

DOI: 10.1145/3343180.3343183

APNet ’19, August 17–18, 2019, Beijing, China

states maintained on the other side to complete its network
communication including receiving or sending data pack-
ets, notifying application, and generating ACK packets, etc..
Many DCN applications requiring large concurrent connec-
tions have asymmetric communication pattern, i.e., only one
side (called server) has huge fan-in/fan-out traffic while the
other side (called client) only has a few connections [5, 10–
12]. To name a few: Parameter servers (server) and workers
(client) in distributed machine learning systems [12], and
result-aggregators (server) and document-lookupers (client)
in web-search back-end services [10]. As such, StaR can sig-
nificantly improve their performance originally bottlenecked
by the RNIC scalability at the server side.
We have implemented StaR in NS3 simulator. Evaluation

results show that compared to original RNICs, StaR can im-
prove the aggregate throughput by more than 160x under
targeted stress tests, and bring more than 4x throughput
improvement for upper-layer applications.

2 CHALLENGES AND INSIGHTS
We need to carefully address several challenges brought by
moving connection states to the other side. Particularly:

• How to complete RDMA functionalities without states on
NIC? RNIC has two major functionalities, i.e., DMAing
data from/to application memory and transmitting
data through network. Correspondingly, we need to
figure out how to: 1) determine the address towrite/read
data to/from the application memory; 2) notify appli-
cations when operations are completed; 3) complete
reliable in-order network transmission and congestion
control; 4) encapsulate packets (e.g., filling IP andMAC
addresses).

• How to ensure security without states on NIC? We can
verify whether an application’s operation to NIC is
secure in driver software. However, without maintain-
ing any states, RNIC cannot conduct security check on
received packets. Therefore, the NIC actions triggered
by the received packets may cause adversarial conse-
quences such as accessing illegal memory address and
generating malicious traffic to the network.

We address above challenges in StaR based on the follow-
ing insights:

• Carry necessary states in packets by trading off some net-
work bandwidth. Specifically, the client tracks the stack
processing states for the server, and generates pack-
ets carrying those necessary states. Then the stateless
side relies on the connection states carried inside the
received packets to complete its RDMA stack process-
ing. As §3.1 shows, the header size consumed by those
states is acceptable, only incurring small bandwidth
overhead.

• Ensure security in the client. Since StaR targets DCN
scenario where all physical machines are managed by a
single operator, we can ensure security by controlling
the packets sent out by the client NICs. Particularly,
we add a security module to each NIC, which is actu-
ally a match-action table that checks all the outbound
packets. If a NIC is specified as the client side of a StaR
connection, its security table will be installed with
entries only allowing legal packets to the correspond-
ing server. In addition, switches in DCN can prevent
source address spoofing.

3 STAR DESIGN
We now discuss in details about how StaR conducts stack
processing and security mechanism, respectively, followed
by a detailed discussion on StaR’s performance.

3.1 Stack Processing

Overview: Fig. 2 overviews the stateless processing in StaR.
StaR offers applications an interface to specify which side
to be stateless before connection starts (e.g., through con-
nection option). Then during transmission, application can
benefit from StaR NIC’s high-scalability without any con-
straints/changes beyond the standard RDMA usage.
Specifically, during connection setup, the stateless side

(called server) driver will transmit all its connection states to
the other stateful side (called client). Original RDMA stack
creates a pair of work queues, called queue pair (QP), to
maintain the stack processing context of each RDMA connec-
tion (including memory-access related states and network-
transmission-related states). As such, the stateless side trans-
fers thewhole QP context to the client side during connection
setup (maintaining a copy in the local host software), and
the client can track and help the server NIC to finish all the
stack processing.
Whenever the server application initiates an RDMA op-

eration by posting a work queue element (WQE) to its QP
on the host, the WQE will be directly encapsulated into a
packet and transfered and stored in the QPmaintained on the
client side, rather than being stored at the local NIC. Then
the client-side stack can generate corresponding packets and
trigger server NIC’s operation according to its WQEs in the
QP. For example, a client can generate packet with DMA
addresses according to the RECV/READWQEs in the remote
QP, so that the data can be directly DMAed by the server
NIC. Similarly, it can get server’s data using DMA addresses
from the SEND/WRITE WQEs in the remote QP. It incurs
cost, indeed, to send WQEs to the other side before transmit-
ting the actual data. However, as introduced later, this has
almost no impact (for receiving operations) or very small

58

Towards Stateless RNIC for Data Center Networks APNet ’19, August 17–18, 2019, Beijing, China

NIC

Process
based on

each packet

NIC Host

SQ

RQ

CQ

Local

Mem table

Net states

SQ

RQ

CQ
Remote

Mem table

Net states

Conn

Stateless (Server) side Stateful (Client) side

Network

Receive
packet/ACK

Send packet/ACK

Host

SQ

RQ

CQ

Conn

Figure 2: Stateless RDMA processing in StaR NIC: Maintain all states at one side.

impact (for sending operations) on the end-to-end delay in
data center scenario.

Since RDMAapplications operate on virtualmemory space,
original RNIC maintains a memory table (Mem table in
Fig. 2) to translate the user-registered buffer address to the
actual physical memory address. As such, in StaR, the server
side will also transmit its memory table to the client dur-
ing connection setup. Then, whenever the application reg-
isters/deregisters a user buffer later, the server driver will
encapsulate it into packets and send to the client, which then
update the entries in the memory table maintained in the
client NIC. Note that registering/deregistering buffer is al-
ways not on the critical path of data transmission, so above
procedure will not impair performance.

RDMA applications typically use TCP to setup and trans-
mit necessary information during connection setup. As such,
we omit the detailed discussion to connection setup, which
is easy to understand, and focus on the data transmission in
the rest of the section.

Packet types: StaR relies on the following types of packets
to complete stateless RDMA processing:
1) WQEP, CQEP and EA. WQEP is the packet that trans-

mits the WQE to the client, and CQEP is the packet that
transmits the CQE to the server after its operation has been
finished. A typical WQE/CQE with one memory region is
less than several 10s of bytes [13]. WQEP and CQEP have a
per-connection sequence number tagged by the driver soft-
ware, and EA (Element ACK) is the ACK that clients return
to servers to notify the WQEP/CQEP has been received.

2) RDP and RA. RDP (Receiving Data Packet) is the packet
that contains the data going to be received by the stateless
server. The data DMA address (8B) and its length (2B) are
carried in each RDP’s header. RDP has a sequence number,
and RA (Receiving ACK) is the ACK that servers return to
clients after receiving each RDP. RAs’ header are generated
using the header information carried in each RDP (e.g., MAC
and IP addresses for this connection). Such header informa-
tion is relatively small. For instance, current RNIC requires

only 44B states to generate a packet’s Ethernet header and
IP header [13].
3) GD and SDP. GD (Getting Data) is the packet that a

client sends to a server to trigger it to send data, which
carries the data DMA address (8B) and length (2B), and the
header information to encapsulate data packets (similar to
RDP). SDP (Sending Data Packet) is the packet triggered by
GD, containing the data sending from the server to the client.
Due to space limitation, we omit the detailed structure

of each packet type. We now introduce the procedure of
data reception and sending in StaR, respectively, based on
how StaR handles the four RDMA verbs (WRITE/READ and
SEND/RECV).

Receiving on the stateless side: There are three condi-
tions that the stateless (server) side receives data, i.e., the
server application proactively READs or RECVs the data sent
by the client, or the server passively receives data which the
client WRITEs. Fig. 3(a) shows the processing procedure on
the two sides.
Specifically, when an application on the server initiates

a READ/RECV, the driver will encapsulate the WQE into a
WQEP packet and notify the NIC to send it out to the client.
After receiving the WQEP, the client decapsulates the WQE
and stores it in the QPmaintained for the server, and immedi-
ately generates an explicit acknowledgment (EA). Note that
EA is necessary sinceWQEPs may get lost (discussed in §3.3).
Then, according to the READ/RECV WQE (also depending
on its own SEND WQEs), the client will generate a series of
data packets (RDPs). Upon receiving RDPs, the server NIC
can directly DMA the data to the corresponding memory
address and generate acknowledgments (RAs) back using
information contained in RDP headers. When all the data in
the READ/RECV has been successfully received (tracked by
the client through RAs), the client will send a CQEP, which
the server can use to notify applications.

It is much simpler for the server to receive data WRITE by
the client. Particularly, the server only needs to DMA data
and generate RAs according to the RDP headers controlled
by the client.

59

APNet ’19, August 17–18, 2019, Beijing, China

…

Stateful side

Store
READ
in QP

Clear
RECV
in QP

send
data

READ

Stateless side

READ
starts

READ
done

…

receive
data

&
send
RA

…

Stateful side

Store
RECV
in QP

Clear
RECV
in QP

send
data

RECV

Stateless side

RECV
starts

RECV
done

…

receive
data

&
send
RA

…

Stateful side

WRITE
done

WRITE
starts

&
send
data

WRITE

Stateless side

…

receive
data

&
send
RA

(a) Receiving.

…

Stateful side

READ
done

READ
starts

&
send
GD

READ

Stateless side

…send
data

Stateful side

Store
WRITE
in QP

Clear
WRITE
in QPWRITE

Stateless side

WRITE
starts

WRITE
done

…

send
data

receive
data

send
GD…

Stateful side

Store
SEND
in QP

Clear
SEND
in QPSEND

Stateless side

SEND
starts

SEND
done

…

send
data

receive
data

send
GD…

(b) Sending.

Figure 3: Procedure of stateless receiving and sending.

Since the client tracks the whole transmission state, it can
apply any congestion control or loss recovery mechanisms.

Sending on the stateless side: Similar as receiving, there
are also three conditions that the stateless (server) side sends
data, i.e., the server proactively WRITEs or SENDs the data,
or the server passively sends data triggered by the client
READs, as shown in Fig. 3(b).

When an application on the server initiates aWRITE/SEND,
the driver will encapsulate theWQE into aWQEP packet and
notify the NIC to send it out to the client. After decapsulating
the WQE and generating EA, the client will generate several
GDs to retrieve data from the server. Upon receiving GDs, the
server NIC can directly fetch the data and encapsulate it into
packets (SDPs) using information contained in GD headers.
The client will send a CQEP to notify server the completion
of WRITE/SEND when all the data has been received (by
tracking the SDPs). The procedure that the client READs
data from the server is simple and similar to the WRITE case
in Fig. 3(a), so we omit the discussion here.
Congestion control. For StaR stateless sender, all the con-

gestion control calculation is done at the receiver (client) side.

StaR can implement various window based congestion con-
trol algorithms (e.g., DCTCP), calculating congestion window
according to received SDPs. Since the size of SDP is deter-
mined by each GD, receiver can control the sender’s sending
rate by adjusting the GDs. Note that rate based congestion
control is not applicable for StaR stateless sender as it needs
per-connection states for pacing the rate.

3.2 Security Mechanism
Fig. 4 overviews the mechanism in StaR to ensure the secu-
rity of NIC stateless processing. For local operations, StaR
driver will check their security to prevent malicious opera-
tion to the NIC. This is typical in device driver, so we omit
the discussion here. We focus on how to prevent malicious
behavior triggered by the received packets.
Specifically, each NIC is enforced with an extra security

check module, and all the traffic will pass through this mod-
ule before sent out. Initially, all StaR traffic (packets with
format introduced before) are blocked by the security module
in case of threatening the stateless NIC. Note that a NIC in
stateless mode only reacts to StaR packets and other packets
are safe. Whenever a StaR connection is setting up, an entry
will be inserted into the client’s security module indicating
legal packets to the server, e.g., legal memory access ranges
in GDs/RDPs in this connection. Note that we ensure the
entries in the security module to be only modified by the
stateless server through control in local NIC drivers. During
the connection lifetime, the entries may also be updated by
the stateless server for control plane operations, e.g., regis-
tering/derigstering user buffer.
Above security mechanism can gracefully prevent state-

less NIC from disrupting the host or the network. Also, dif-
ferent connections within a NIC can be prevented from ac-
cessing others’ memory regions. However, similar as original
RDMA, applications should carefully use its own registered
buffers within an RDMA connection thus to prevent over-
writing data or getting the outdated data.

3.3 Discussions on Performance

No state-fetching bottleneck on data transmission: In
StaR, the stateless server receives/sends every data packet
only based on each received RDP/GD. Since per-packet state-
less processing can be well pipelined and parallelized in NIC
hardware, there would be no performance bottleneck with
any large scale. In contrary, in original RDMA, if a received
packet belongs to a connection whose state is not on-chip,
the processing has to be stalled until the NIC fetched its state
from the host. Similarly, when original RNIC is going to send
a packet triggered by a SEND/WRITE WQE, it has to first
fetch the corresponding connection state before start the
sending procedure.

60

Towards Stateless RNIC for Data Center Networks APNet ’19, August 17–18, 2019, Beijing, China

Network

NIC

Stateful (client) Side

NICHost Host

Stateless (server) side

Generate white list to the security module

Trustable
packet

Trustable
packet

Stateful (client) Side

Network
Stack

Security
Check

Security
Check

Network
Stack

Host

APP APP

APP

Driver: ensure secure operations

NIC
stateless processing

Figure 4: Ensure security for stateless processing in StaR NIC.

Cost on maintaining WQEs at the remote side: This
mainly incurs three costs:

1) Extra network delay for transmitting WQEs. As Fig. 3(a)
shows, when receiving data from WRITE, servers need not
post anyWQE so there is no extra delay. For READ, StaR also
incurs no extra network delay before data transmission as the
READ request and the READWQE are combined in the same
WQEP. For RECV, StaR indeed needs an extra 1/2 round-trip-
time (RTT) to first transmit the WQE to the client. However,
the impact on performance is negligible since typical RDMA
applications always prepost multiple RECV WQEs and then
notify the sender to start sending data.

Note that when READ/RECV is done, applications on StaR
need an extra RTT to get notified by CQEPs from the client.
However, a network RTT without software involvement in
DCN is negligible (e.g., <8 µs across switches [14]). Moreover,
high-performance RDMA applications often proactively poll
certain memory addresses to track the transmission sta-
tus [3]. , hence this notification delay will not impair such
applications’ performance.
When sending data, transmitting WQEs incurs an extra

RTT. StaR bears this tradeoff for stateless processing thus to
improve the throughput under massive concurrent sending.
There is no extra delay for application notification because
original sender RNIC also waits for the receiver’s ACK so it
knows the sending operation has finished.

2) Processing overhead on generating WQE packets. Besides
network delay, generating WQE packets also incurs process-
ing overhead. While in original RDMA WQEs are directly
fetched and stored in the NIC, StaR driver needs to first en-
capsulate them into WQE packets before passing to the NIC.
However the WQEs can be preposted and well pipelined,
which has no impact on the application performance (see re-
sults in Fig. 5(b)). Moreover, the processing overhead is small
compared with the subsequent data transmission, because
WQEPs are small-size control packets which need no com-
plicated transport logic. Specifically, currently StaR adopts
no congestion control for WQEPs, and simply encapsulating
the StaR/UDP/IP/Ethernet header for them before delivered
to the NIC.

3) Handling WQE loss. WQEs may be lost during transmis-
sion. StaR needs to handle it on the stateless side since the
remote stateful side may not even know whether there are
any WQEs posted if they get lost. StaR deals with WQE loss
in the driver software thus to keep stateless processing in the
NIC. Particularly, each EA for WQE is directly passed to the
driver by StaR NIC. As the lossless network where RDMA is
typically deployed on has extremely low loss rate [5], this
rarely impacts the host performance. Moreover, the EA pro-
cessing does not delay the data transmission procedure (see
Fig. 3).

Auto adaption between stateless and stateful mode: To
further optimize the cost discussed before, each StaR NIC
can be implemented with two processing logics, i.e., one for
original RDMA connections and one for stateless connec-
tions. StaR will automatically choose the original RDMA
mode for the newly created connection if current concurrent
connections does not exceed the on-chip memory limit. And
for more connections, it may turn into the stateless mode
if the on-chip memory has been used up. We note that au-
tomatic mode transition for active connections may offer
better performance as connections come and go, which we
plan to study further in future works.

4 EVALUATION
Our evaluation tries to answer the following questions: 1)
How does StaR perform under dedicated stress test (§4.1)? 2)
How does StaR improve the performance of upper-layer appli-
cations (§4.2)?

Simulation settings:We evaluate StaR and original RNIC
(denoted as RDMA) in NS3 simulator. A server and multiple
clients are directly connected to a 100Gbps switch, with a
12µs base network RTT between them. MSS is 1.4KB. The
PCIe latency is set to be 1µs for RNIC to access states stored
in host memory or host to deliver WQE to RNIC. For RDMA,
its RNIC on-chip memory can store up to 300 connections’
states (based on Fig. 1). Since our evaluation targets the RNIC
scalability problem caused by on-chip states, to avoid the in-
terference of congestion control and loss recovery, we set the

61

APNet ’19, August 17–18, 2019, Beijing, China

switch queue to be large enough to avoid PFC, ECN or packet
loss. We do not turn on the capability of mode auto-adaption
in StaR, thus to better evaluate its overhead.

0

60

120

180

40 640 1240 1840 2440

R
at

e
(m

ill
io

n
s/

s)

of conns

StaR RDMA

(a) Stress test.

0

1

2

3

4

40 280 520 760

R
at

e
(m

ill
io

n
s/

s)

of conns

StaR RDMA

(b) RPC application.

Figure 5: Aggregate throughput (MOPS) at the server
under stress test and RPC applications.

4.1 Stress test
We simulate the same scenario as our testbed measurements
in Fig. 1. Various number of clients concurrently WRITE
to one server. All WRITEs from one client are through one
long-lived RDMA connection. In each connection, there is
only one outbounding 8-byteWRITE at anymoment, and the
client immediately initiates another 8-byte WRITE after the
former one has finished. In StaR, the server is the stateless
side.

Results: As shown in Fig. 5(a), as the number of concur-
rent connections grows, the aggregate WRITE rate in RDMA
first grows to about 23M operations per second (OPS) and
then quickly drops to about 1M OPS due to connection state
missing. In contrary, the overall WRITE rate in StaR can
scale well as the number of connection grows, reaching the
100Gbps bandwidth limitation (about 166M OPS). Note that
due to the RTT and PCIe latency settings, the absolute re-
sults in this simulation are different from those in the testbed
(Fig. 1), but the relative trends are the same.

4.2 Application throughput
We simulate a remote procedure call (RPC) application, where
multiple clients concurrently call the remote procedure in
one server. Each client sends a 2.8KB RPC request to the
server (through SEND/RECV), and the server responses an
1.4KB RPC result (through SEND/RECV) after receiving the
request (assuming zero RPC computation time). The client
immediately repeats the RPC call after the former one com-
pletes. All RPCs between a client and the server use one long-
lived RDMA connection. We assume all the RECV WQEs are
pre-posted which does not affect the RPC performance. In
StaR, the server is the stateless side.

Results: Fig.5(b) shows the overall RPCs finished per sec-
ond in the server. StaR can always keep the maximum 3.8M

OPS RPC rate (limited by the network bandwidth) as the
number of concurrent connections grows beyond 280. In
contrary, the RPC rate in RDMA drops to about 0.9M OPS
due to state missing on the NIC. Note that StaR has lower
RPC rate than RDMA when the concurrency is small, be-
cause each SEND in StaR requires an extra RTT to transmit
the WQE first. However, this problem can be solved by the
auto adaption scheme discussed in §3.3. The maximum RPC
rate of StaR is a little lower (∼2%) than the maximum in
RDMA (for 160 to 300 connections) due to the overhead of
extra headers and control packets.

5 RELATEDWORK
StaR shares the same idea with Trickles [15] on moving
connection states to the other side. However, Trickles only
focuses on TCP states for software network stack, and this
TCP-only solution is not fully stateless since the stateless
side still needs to calculate sending rate according to TCP
congestion control information of the connection. On the
contrary, StaR is the first stateless NIC for RDMA, which
maintains all necessary memory-access-related and network-
related states on the other side and carries them in packet
header, to make the server side RNIC completely stateless.
[16] builds an HTTP service based on “stateless” TCP,

which is actually an TCP interface working on UDP sockets.
The application has to do a bunch of network processing
such as congestion control and loss recovery, which is con-
tradicted to RDMA’s design rationale.

6 CONCLUSION
This paper presents StaR. To the best of our knowledge, it
takes the first step to fundamentally solve the RNIC’s scalabil-
ity problem, by moving all the connection states to the client
side. As such, StaR server can maintain zero connection-
related states while all the RDMA data plane processing is
still done by NIC hardware. Preliminary simulations show
StaR’s potential to significantly improve the RNIC’s per-
formance under large concurrency, which might bring per-
formance and architecture revolutions to the upper-layer
large-scale RDMA applications.

7 ACKNOWLEDGMENTS
We thank the APNet reviewers for the helpful comments
on improving this paper. We thank Yongqiang Xiong and
Peng Cheng for valuable discussions on the idea of making
one side’s NIC stateless. This work was partly supported
by the National Natural Science Foundation of China under
grant 6187060280, Fundamental Research Funds for the Cen-
tral Universities of China, and Huawei Innovation Research
Program.

62

Towards Stateless RNIC for Data Center Networks APNet ’19, August 17–18, 2019, Beijing, China

REFERENCES
[1] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,

Jitu Padhye, and Marina Lipshteyn. RDMA over Commodity Ethernet
at Scale. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, pages 202–215. ACM, 2016.

[2] Supplement to InfiniBand architecture specification volume 1 release 1.2.2
annex A17: RoCEv2 (IP routable RoCE). InfiniBand Trade Association,
2012.

[3] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. FaRM: fast remote memory. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), pages 401–
414, 2014.

[4] Anuj Kalia, Michael Kaminsky, and David G Andersen. Design Guide-
lines for High Performance RDMA Systems. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), 2016.

[5] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-Sided (RDMA)
Datagram RPCs. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 185–201, GA, 2016. USENIX
Association.

[6] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, Enhong Chen, and ThomasMoscibroda. Multi-
path transport for RDMA in datacenters. In 15th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 18), pages
357–371, 2018.

[7] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable RDMA RPC on
Reliable Connection with Efficient Resource Sharing. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 19:1–19:14,
New York, NY, USA, 2019. ACM.

[8] Open MPI: Open Source High Performance Computing), 2019. https:
//www.open-mpi.org/.

[9] Anuj Kalia, Michael Kaminsky, and David G Andersen. Datacenter
RPCs can be General and Fast. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 1–16, 2019.

[10] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache,
Mikhail Rybalkin, and Chenyu Yan. Speeding Up Distributed Request-
response Workflows. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, pages 219–230, New York, NY,
USA, 2013. ACM.

[11] Rajesh Nishtala, Hans Fugal, Steven M Grimm, Marc P Kwiatkowski,
Herman Lee, Harry C Li, Ryan Mcelroy, Mike Paleczny, Daniel Peek,
Paul Saab, et al. Scaling Memcache at Facebook. pages 385–398, 2013.

[12] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. Scaling distributed machine learning with the parameter server.
In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), pages 583–598, 2014.

[13] Linux Cross Reference. Linux/include/linux/mlx4/qp.h. http://lxr.free-
electrons.com/source/include/linux/mlx4/qp.h.

[14] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, et al. A cloud-scale acceleration archi-
tecture. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pages 1–13. IEEE, 2016.

[15] Alan Shieh, Andrew C Myers, and Emin Gün Sirer. Trickles: a stateless
network stack for improved scalability, resilience, and flexibility. In
Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation (NSDI), pages 175–188, 2005.

[16] David A Hayes, Michael Welzl, Grenville Armitage, and Mattia Rossi.
Improving HTTP performance using “stateless” TCP. In Proceedings
of the 21st international workshop on Network and operating systems

support for digital audio and video, pages 57–62. ACM, 2011.

63

https://www.open-mpi.org/
https://www.open-mpi.org/
http://lxr.free-electrons.com/source/include/linux/mlx4/qp.h
http://lxr.free-electrons.com/source/include/linux/mlx4/qp.h

	Abstract
	1 Introduction
	2 Challenges and Insights
	3 StaR Design
	3.1 Stack Processing
	3.2 Security Mechanism
	3.3 Discussions on Performance

	4 Evaluation
	4.1 Stress test
	4.2 Application throughput

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

