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Abstract—Due to its superior performance, Remote Direct
Memory Access (RDMA) has been widely deployed in data center
networks. It provides applications with ultra-high throughput,
ultra-low latency, and far lower CPU utilization than TCP/IP
software network stack. However, the connection states that must
be stored on the RDMA NIC (RNIC) and the small NIC memory
result in poor scalability. The performance drops significantly
when the RNIC needs to maintain a large number of concurrent
connections.

We propose StaR (Stateless RDMA), which solves the scal-
ability problem of RDMA by transferring states to the other
communication end. Leveraging the asymmetric communication
pattern in data center applications, StaR lets the communication
end with low concurrency save states for the other end with high
concurrency, thus making the RNIC on the bottleneck side to be
stateless. We have implemented StaR on an FPGA board with
10Gbps network port and evaluated its performance on a testbed
with 9 machines all equipped with StaR NICs. The experimental
results show that in high concurrency scenarios, the throughput
of StaR can reach up to 4.13x and 1.35x of the original RNIC
and the latest software-based solution, respectively.

I. INTRODUCTION

As a high-performance network stack, remote direct mem-
ory access (RDMA) has moved out from traditional HPC
clusters, being widely deployed in cloud data centers [1]–[3].
By offloading the entire network stack from host to the RDMA
network interface card (RNIC), RDMA makes applications
directly access data in remote memory, largely bypassing the
CPU.

In modern cloud data center, large-scale distributed applica-
tions are typically built on many machines, requiring frequent
network communication using large number of concurrent
connections [4]–[6]. However, the performance of RDMA
degrades as the number of connections grows. Our testbed
measurements (Fig. 1) show that even the latest RNIC can only
support less than 450 concurrent connections if to maintain the
peak performance (detailed settings described in §II-B).

Essentially, above RDMA scalability1 problem is a side-
effect of offloading. To complete network transmission and
data DMA without involving host CPU, the RNIC has to
maintain a bunch of connection-related states (DMA-related,
networking-related and security-related). As a consequence,
when there are too many concurrent connections, the RNIC’s
limited on-board memory is used up and it has to frequently
fetch connection states from host memory through slow PCIe
bus, which significantly hurts the performance. Realizing
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1In this paper, we define RDMA scalability as the number for concurrent

connections an RNIC can support without throughput degradation.

this problem, previous software-based solutions either try to
mitigate it (e.g., using large memory pages [7] or connec-
tion grouping [8]) or work around it (e.g., using unreliable
datagram [9]), still remaining the RNIC scalability problem
unsolved.

In this paper, we ask that can we completely remove the
RNIC’s scalability constraint? To address this question, we
present Stateless RNIC (StaR). Particularly, applications that
require high concurrency typically have asymmetric communi-
cation pattern, i.e., only one side (called server) in the network
communication has many connections while the other side
(called client) only has a few [5], [9]–[11]. Observing this, the
key insight of StaR is to move all the connection states to the
client side, and maintain zero connection-related states on the
server RNIC. Specifically, the client RNIC tracks all the states
for the server, and guides the server’s RNIC to complete all its
data transmission including receiving or sending data packets,
notifying application, and generating ACK packets, etc.. As
such, StaR can significantly improve the performance for those
applications with massive fan-in/fan-out on the server side,
since the RNIC memory will no longer limit its scalability.

Although the intuition is simple, there face two big chal-
lenges in realization: 1) How to complete RDMA functionali-
ties without states on NIC? 2) How to ensure security without
states on NIC? We address above challenges in StaR based on
the following insights:

• Carry necessary states in the packets. Specifically, the
client tracks the transmission status for the server, and
generates packets carrying necessary states to the server.
Then the server’s stateless RNIC relies on the connection
states carried inside the received packets to complete its
RDMA processing.

• Ensure security in the client. Since StaR targets data
center scenario where all physical machines are managed
by a single operator, we can ensure security by controlling
the packets sent out by the client NICs. Particularly, we
add a security module to each NIC, which is actually a
match-action table that checks all the outbound packets,
and only allow legal packets to the server’s stateless
RNIC.

We have implemented StaR on an FPGA-based 10Gbps
NIC prototype, and built a testbed consisting of 9 machines
each equipped with a StaR RNIC. Testbed evaluation results
show that StaR is able to maintain maximum bandwidth as the
number of connections goes up, which brings up to 4.14x and
1.35x performance improvement to upper layer applications
compared to the original RNIC and the latest software-based978-1-6654-4131-5/21/$31.00 ©2021 IEEE



solution, respectively.

II. PROBLEMS, EXISTING SOLUTIONS AND INSIGHTS

A. Preliminaries

Communication between RDMA hosts is based on a pair of
work queues (containing a send queue and a receive queue),
named queue pair (QP), which will be created and maintained
on the RNIC in the communication setup phase. When the
application initiates an RDMA operation, it will post a work
queue element (WQE) to the send queue or receive queue. The
RNIC retrieves the operation from the send/receive queue, then
sends or receives the data, and then notifies the application the
completion of the operation by posting a completion queue
element (CQE) to a dedicated completion queue (CQ).

Applications post RDMA operations through the verbs
API: SEND, RECV, READ and WRITE. READ/WRITE are
memory-access operations which allow remote memory to
be written/read without involving the remote CPU, while
SEND/RECV are message-passing operations which require
the explicit participant of the remote CPU to transmit data.
RDMA provides both reliable/unreliable and connected/un-
connected transport mode for applications. Specifically, there
are three modes in RDMA: Reliable Connected (RC), Un-
reliable Connected (UC), and Unreliable Datagram (UD).
As RDMA being widely deployed in large-scale data center
applications, it has to cope with packet loss caused by failures
or hardware/software bugs, which is not uncommon even in
well-engineered data center networks [12]–[14]. As such, the
reliable mode RC is the most widely used in current data
center applications [2], [3], [15], [16]. Therefore, we focus on
the RC mode in this paper.

The RC mode provides connected and reliable transmis-
sion, but also requires to maintain significant states on the
RNIC for each connection. There are three kinds of states
an RNIC has to maintain for each RDMA connection2: 1)
DMA-related, 2) networking-related and 3) security-related.
DMA-related states are used for memory access, including
WQE number, user page size, memory table address, etc..
Networking-related states are used for network transmission,
including queue pair number (QPN), packet sequence number
(PSN), transport timeout, etc.. Security-related states are used
for security check, including protection domain (PD), memory
region (MR) and memory window (MW), etc.. A typical
RDMA implementation requires 256B states for each RDMA
connection [17].

B. RDMA scales poorly

1) Experimental results: Many previous works have already
measured the scalability problem in RNIC [7]–[9], [18], [19].
However, their results are based on RNICs released several
years before, and it is unclear whether such problem still
exists and how severe it is for current high-end RNICs. As
such, we conduct the following experiments to evaluate the

2Without explicit specification, RDMA connection refers to RDMA RC
connection in the rest of the paper.
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Fig. 1. Performance degrades when the
number of concurrent connections grows
on Mellanox ConnectX-6 Dx EN NIC.
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Fig. 2. State and packet buffer in
normal RNICs.

RDMA scalability on Mellanox ConnectX-6 (CX6) Dx EN
NICs, which are the latest RNIC (released at 2019) at the
time of writing this paper.

Specifically, we connect 1 server machine with 3 client
machines (multiple clients to avoid bottleneck at the client
NIC), using CX6 NICs with 100Gbps port, through a Huawei
100Gbps switch. The server concurrently issues RDMA
READ requests to fetch 32-byte data from all the three clients
through multiple RC connections, keeping one out-bounding
READ on each connection3. To avoid CPU bottleneck (two-
socket Intel Xeon E5-2650 CPU), we use multiple threads on
the server to issue READ requests fast enough. To evaluate
RNIC scalability, we vary the number of concurrent connec-
tions and measure the overall throughput at the server (READ
operations completed per second). Figure 1 shows the result.
When the concurrency is low, the overall throughput grows as
the number of concurrent connection grows larger, since there
are more out-bounding READ requests on the wire. However,
as the number of concurrent connection grows beyond 450,
the overall throughput starts to drop fast and is less than
70% of the peak performance when there are more than 3000
connections, while the CPU utilization is still low. As we
can see, although CX6 has higher port speed and more on-
chip resources than previous CX5 or CX4 NICs, the RNIC
scalability problem still exists.

2) Fundamental problems: Due to the cost issue, the RNIC
on-chip memory is very small, typically serving as a cache
for only part of the connections and the whole states of
all connections are stored in the host memory4. When the
concurrency is high, upon dealing with connections whose
states are not stored on the NIC, the NIC has to stall and
fetch the states from host memory through slow PCIe bus,
which significantly hurts the performance.

As Fig. 2 shows, typically there is a small packet buffer
on the RNIC to temporarily hold packets thus to amortize the
hardware processing delay for each packet so the RNIC can
saturate the bandwidth. When the bandwidth-delay product
(BDP) grows, it needs a larger packet buffer which has to

3Our measurement code is based on the open-sourced code in [18]
4Although modern high-end NICs are equipped with large off-chip DRAMs,

they are too slow for connection states which is used in every packet’s
processing, especially for high-speed RDMA network which has 100Gbps
(or higher) throughput.



hold more packets. However, packets may belong to different
connections, which require different connection-related states
to process. As such, the buffer space to hold connection states
has to be larger. This issue becomes even more significant
when dealing with many small RDMA requests in high-
bandwidth network, because there would be a large number
of small packets in the packet buffer which may require
many connection states, easily causing state miss on the NIC
memory. Moreover, connection state cache miss under high
concurrency will incur a temporary stall for packet processing
(waiting states from PCIe), which in turn needs a much
larger packet buffer to hold incoming packets, thus further
overloading the burden of NIC memory. Otherwise, without
enough memory, the NIC has to stall the pipeline and stop
receiving packets, hurting performance.

C. Existing solutions and limitations

Existing solutions mainly focus on constraining the usage
of upper-layer software, thus to avoid the scalability issue of
the lower-layer RNIC. Particularly, they can be classified into
two types:

• Avoiding generating too many connections by using soft-
ware middleware to control the application communica-
tion pattern [8], [20], [21]. They try to schedule the com-
munication requirements among multiple connections,
and purposely serve only part of the connections on the
RNIC during a certain period of time, thus to avoid high
concurrency on the RNIC. For example, ScalaRDMA [8]
classifies connections into several groups, and allows just
one group to run at a time by blocking other groups’
connections that are about to initiate operations, thus
to release the burden of lower-layer RNICs. However,
using middleware brings the overhead back to CPU which
is contrary to the principle of RDMA. Also, agnostic
scheduling between connections in the middleware below
may impair upper-layer applications’ performance, since
there may exist dependency between different connec-
tions. For example, in distributed machine learning with
a server-worker structure, the next round of the parameter
distribution can only begin after the last round of the
parameter calculation is completed (assuming the most
widely used synchronous mode). This requires the server
node to distribute parameters and receive all the responses
in a timely manner. However, if scheduling RDMA
connections in the middleware agnostic to this application
requirements, the performance will be hurt significantly
although the RNIC concurrency is not that high (see
results in §V).

• Using RNIC in unreliable mode instead of reliable
mode [9], [22], [23]. Although RNIC does not need
to maintain connection-related states in the unreliable
mode, thus has no scalability issue, it may cause two-fold
problems: 1) either it may have very low performance
when the network is lossy (which is not uncommon
even in well-engineered data centers [12]) due to lack of
transmission reliability, 2) or it may incur very high CPU

cost because it has to deal with transmission reliability
back in the software [24].

D. Opportunities

We observe that for RDMA applications that require high
concurrency in the RNIC, not both sides of a connection may
have high concurrency at the same time. Particularly, there
are often some RNICs which have huge fan-in/fan-out while
other RNICs only keep a handful of connections. For example,
servers in Timestamp Oracle [25] typically need to keep more
than 2800 concurrent connections, meanwhile, because of the
small number of servers, the clients only need to maintain a
few connections. Such asymmetric traffic pattern offers us a
great opportunity to design a novel asymmetric RNIC state-
maintain mechanism. Specifically, we do not maintain states
on both sides of a connection. Instead, we could move both
sides’ states of the connection to the RNIC side with only
a few connections (called client side), and let the other side
which has a large number of connections to be stateless. There
exists work [26] before to apply this idea to TCP/IP protocol
stack. Inspired by them, we design StaR5 to solve RDMA
scalability problem.

III. STAR DESIGN

A. Overview

StaR RNICs are totally compatible to current RDMA API,
requiring no changes to existing applications6. As mentioned
before, the principle of StaR is to maintain the connection
states of the high-concurrency side’s NIC on the other low-
concurrency side’s NIC. The architecture of StaR is shown
in Fig. 3. During communication, one side’s NIC is totally
stateless (called server) and the other side’s NIC is stateful
(called client). The stateful side tracks the data transmission
states for both sides, and the stateless side’s NIC works ac-
cording to the information embedded in the incoming packets,
maintaining no connection states.

In the rest of this section, we first describe the seven packet
types used in StaR. Then we dive into the detailed data
transmission steps of StaR. Next, we introduce StaR’s security
mechanisms. Finally, we discuss several other design points
and limitations in StaR.

B. Packet types

There are seven types of packets in StaR, as summarized in
Table I. Specifically:

• WQEP, CQEP and EA. These three packets are used to
control the start and the end of an operation. When the
server initiates an operation, it encapsulates a WQEP
(WQE Packet) and sends it to the client, containing
information such as the operation type, data address, and
data length. The server NIC does not record any states
for this operation and remains stateless during data trans-
mission. When the transmission is complete, the client

5We presented a preliminary idea of StaR in an earlier workshop paper [27].
6Except for a minor API extension in an optional connection setup mode.

See details in §III-C1.
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Packet Type Description

WQEP Sent by stateless side, to initiate events

CQEP Sent by stateful side, to notify event completion

EA Sent by stateful side, to ack WQEP or CQEP

RD Sent by stateful side, to carry data to stateless side

RDA Sent by stateless side, to ack RD

GD Sent by stateful side, to fetch data from stateless side

GDA Sent by stateless side,  to ack GD and carry data to stateful side

TABLE I
STAR PACKET TYPES.

encapsulates a CQEP (CQE Packet) and sends it to the
server. The server returns a EA (Event Acknowledgment)
packet according to the received CQEP and generates a
CQE to notify applications. CQE is also generated at the
client after receiving the EA for confirmation. It is worth
noting that the client confirms the delivery of WQEP or
CQEP by receiving EA. This is because only the client
stores states, so it is necessary for reliability.

• RD, RDA. RD (Receiving Data) is the packet that carries
data to server, which also carries the states required by the
server to help DMA the received data and organize the
corresponding RDA (RD ACK) back. The RD/RDA is a
packet pair. The client can retransmit RDs (if necessary)
by tracking received RDAs to ensure reliability.

• GD, GDA. GD (Getting Data) is the packet sent by
the client to the server to get data from server host
memory (through DMA), which also guides the server
to encapsulate the data packet (GDA) and send it to the
client. Similar as RD/RDA, the client can track received
data packets (GDAs) to ensure reliability (thus we call
data packet GDA, standing for GD ACK).

C. Data transmission

1) Connection setup: When setting up a connection, the
two sides negotiate to determine which side is stateless. Once
determined, the stateful side receives all the initial states (e.g.,
QPN, page size, PD) from the stateless side and stores it on the
board. Both sides’ role do not change until the connection is
closed. We devise two alternative modes to specify which side
is stateless during connection setup: a) explicit mode, where

RDMA users directly specify the stateless/stateful role of the
RNIC through an extended API when creating connections,
and b) auto-negotiation mode, where RNICs on both sides
negotiate the role by themselves according to the current
concurrency degree on each side.

In the auto-negotiation mode, RDMA users need no explicit
specification during connection setup. Both NICs automati-
cally send the number of stateful connections currently main-
tained on-board to each other when a new connection is about
to be established. If the number of connections on one side (or
both) exceeds a certain threshold (threshold configurable), the
two sides will negotiate that the side with fewer connections
works as the StaR stateful side and the other one works as
the StaR stateless side. After negotiation, the stateless side
transfers all the initial connection states to the stateful side
through network in a reliable manner (with explicit ACK),
and remains a copy in local host memory. After connection
setup is finished, both sides are ready for posting WQEs and
transmitting data.

2) Posting WQE: When an operation request is posted from
the host to the RNIC in the form of a WQE, the stateful
side and the stateless side will behave differently. On the
StaR stateful side, the WQE is stored on the RNIC waiting
to be processed, which is the same as original RNIC. On
the StaR stateless side, upon getting a WQE from the host,
the RNIC directly packs it into a WQEP and sends it to
the other (stateful) side, without storing it locally. We have
modified the RDMA lib, so the necessary information used
for packing WQEPs is passed from the host when applications
initiate a WQE, requiring to store no states on the RNIC.
Next, when the stateful side receives the WQEP, the RNIC
parses the WQEP and gets the necessary information for data
transmission (e.g., the starting memory address and the length
of the data). After that it starts to get/send data from/to the
stateless side (introduced in §III-C3).

Note that WQEP may be dropped in the network, in which
case the operation request may get lost and the application
is not notified. Therefore, when the application initiates an
operation request on the stateless side, besides generating a
WQEP, we start a timeout timer (recorded in our modified
RDMA lib software) to monitor whether this WQEP has been
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successfully received by the stateful side. Moreover, we let
the stateful side immediately return a EA back to the stateless
side when receiving a WQEP. When the stateless side’s RNIC
receives a EA, the EA is directly passed to our software lib and
the corresponding timeout timer will be canceled. Otherwise,
when the timeout occurs, the software lib will re-post the WQE
to the RNIC and a WQEP will be sent out again. If the WQEP
has not been successfully received after multiple timeouts, a
CQE indicating operation request error will be delivered to
the application. Note that EA is not on the critical path of
initiating operation and transmitting data, so it does not hurt
the performance.

The first several steps in Fig. 4 show how it works when
posting WQEs on the stateless side.

3) Sending/Receiving data: We introduce the data trans-
mission steps based on two scenarios, i.e., when the stateless
side receives or sends data.

Receiving data on the stateless side. There are three con-
ditions that the stateless side receives data, i.e., a) stateless
side proactively calls READ, b) stateful side posts SEND
and stateless side correspondingly posts RECV, c) stateless
side passively receives data when stateful side posts WRITE.
Fig. 4(a) shows the working steps on the two sides. When
the stateful RNIC has received the WQEP from the remote
side (or WQE from local application), it can easily find the
memory address of the data going to be sent to the stateless

side according to the information embedded in the WQEP (or
WQE). Then, the stateful RNIC encapsulates the data into RD
packets and sends them to the stateless side. Each RD packet
contains the destined memory address, data length, and other
necessary states, such as QPN, PSN, etc.. When the stateless
side receives an RD packet, it performs two operations, i.e.,
DMA data to the host memory and return RDA, which can be
easily done using the information contained in the RD packet.
Specifically, the memory address and data length are used to
encapsulate the DMA descriptor to transfer data from RNIC
to host memory. The RDA packet has the same header as the
RD packet but with the destination and source IP/port/QPN
reversed. Detailed packet format is introduced in §IV. The
stateful side tracks data transmission according to the RDAs,
and retransmits RDs if necessary (when packets lost) for
reliability.

Sending data on the stateless side. Similarly, there are three
conditions that the stateless side sends data, as shown in
Fig. 4(b). When the stateful RNIC has received and parsed the
WQEP from the remote side (or WQE from local application),
the stateful side generates GD packets according to the WQEP
(or WQE) to fetch data from the stateless side. Each GD packet
contains necessary DMA-related and networking-related infor-
mation. According to the carried information, the stateless side
can fetch the target data from host memory and pack it into
GDA packets and send them back to the stateful side. The
stateful side receives the data in GDA packets, tracks data
transmission according to the GDAs, and retransmits GDs to
fetch data again if necessary (when packets lost) for reliability.

4) Generating CQE: After all the data in a WQE has been
successfully transmitted, if the WQE is posted by the stateful
side, its RNIC can directly generate the CQE and push it into
the corresponding CQ (in local host memory), which is the
same as the original RNIC. However, if the WQE is posted by
the stateless side, the stateful side’s RNIC will generate the
CQE for the stateless side and encapsulates it into a CQEP
and sends it to the stateless side. When receiving CQEP,
the stateless side’s RNIC retrieves the CQE from the packet,
DMAs it to the corresponding CQ, and returns a EA back, all
according to the information carried in the CQEP. If EA has
not been received, the stateful side will retransmit the CQEP.

D. Security mechanisms

Security model: Our security model assumes that all the
NICs (including the hardware and the corresponding driver/lib
software) in the network are deployed and controlled by
trusted data center operators. This assumption to the trusted
computing environment is obviously stronger than current
RDMA. We discuss the feasibility and limitation in practice
in §III-E3. Based on above assumption, StaR adopts the
same memory protection mechanisms as in current RDMA
(PD, MR, MW)7, except that StaR moves the protection
mechanisms on the stateless side to the other stateful side.
Note that due to the lack of authentication and encryption,

7Detailed RDMA security mechanisms can be found in [28].
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current RDMA can not cope with malicious attackers who
may manipulate packets in the middle or generate deliberately
forged packets from uncontrolled hosts, which is the same as
StaR.

Current RDMA prevents malicious memory accesses from
remote side relying on checking if the packet contains infor-
mation that matches the maintained states. For example, the
RNIC will only process and DMA the data in a packet only
if it has the right access tokens (e.g., rkey) corresponding to
the target data memory region (registered before transmission).
However, without maintaining those states, the StaR stateless
side’s RNIC is not able to do security check upon receiving
packets from the network. As such, we design a mechanism
that conducts security check at the client side, which ensures
the packets sent to the stateless side’s RNIC are all legal.

Particularly, we insert a hardware security check module
in every NIC, which checks every packet before sending it
out to the network. Security rules (stored in the security
registry table), which are used to filter packets, will be loaded
into the module during connection setup and memory region
registration. Fig. 5 overviews the security architecture. Now
we dive into the details that how security registries are updated
and packets are checked.

1) Updating security registry table when establishing/clos-
ing connections or registering/deregistering memory regions:
The security registry table contains a set of 5-tuple rules, i.e.,
<Server Address (Server ADDR), Queue Pair Number (QPN),
Protection Domain (PD), Memory Region (MR), Memory
Windows (MW)>8, which are the whitelist indicating that for
packets destined to a certain server, which memory regions
are legal to access according to the connection (QPN) it
belongs to and the corresponding PD, MR and MW. On the
stateless side, when the application establishes a connection
and binds it to a PD (e.g., through ibv_create_qp(pd,
...)), the lib/driver will intercept the call and insert a
corresponding whitelist rule to the security check module
on the corresponding stateful sides’ NIC, indicating which

8Note that each tuple may consist of multiple fields. For example, a MR
contains the registered memory address, the corresponding rkey and lkey, and
the access restrictions such as read-only, write-only.

PD the QP belongs to. When a new MR is registered to a
PD (e.g., through ibv_reg_mr(pd, ...)), the lib/driver
will update the corresponding rule on the stateful sides’ NIC,
indicating which PD the MR belongs to and its access tokens.
Similarly, the rules will be updated or removed when the
MR is deregistered or the connection is closed. StaR relies
on reliable and secure network transmission (e.g., the mature
SSL) to ensure the lib/driver can update rules successfully and
correctly on the other side’s NIC.

2) Checking packets before sending them out of the NIC:
Every packet is checked before sent out from the stateful side’s
NIC. If there is no matched whitelist rule (e.g., packets from
certain QPs try to access unauthorized MRs), packets will be
discarded by the NIC and will not be sent out. Note that the
security module exists on every NIC including the stateless
side’s, however, there would be rules only on the stateful
side and stateless side will not perform rule checking (more
details in §IV-B3). As the stateful side has low concurrency (so
the number of rules is small), it will not be the performance
bottleneck.

E. Discussions and limitations
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Fig. 6. Multiple stacks on StaR RNIC.

1) Stateless and stateful StaR on the same NIC, as well as
other stacks: All the description in this paper on the stateless
and stateful side of StaR is in terms of one connection.
Note that a StaR NIC can simultaneously hold stateless and
stateful connections as Fig. 6 shows (the StaR box on the top).
Packets are classified to the right processing logic according
to a certain header field. As discussed in §III-C1 before, a
connection on a StaR NIC can either be specified or auto-
negotiated to be stateless or stateful, and different connections



on the NIC can work in different mode (stateless or stateful).
Moreover, other stacks such as normal RDMA and Ethernet
can be integrated into StaR NIC for user to choose, with a
classifier and security module (§III-D) in the front, as shown
in Fig. 6. Note that the security module does not affect the
performance of other stacks, since their packets have different
formats (differentiate by certain fields) which will not be
processed by the StaR stack (neither the StaR stateless logic),
so these packets do not go through the whitelist rules. We
have implemented a normal RDMA stack for comparison on
our StaR NIC (see §IV).

2) Performance trade-off, stack selection and mode/stack
switch: StaR eliminates the scalability issue on the stateless
side, but adds latency for posting WQEs and delivering CQEs,
trading off an extra RTT for packing WQEP/CQEP and trans-
mit to the other side, and also burdens the stateful side. For
applications with low-concurrency or with high-concurrency
on both sides, StaR may have inferior performance. Thus for
such communication, users can select normal RDMA stack
on StaR NIC. Moreover, after connection setup, currently a
connection will use the (if) selected StaR stack and remain the
stateless/stateful mode until it is finished. However, traffic pat-
terns may change dynamically, e.g., the number of concurrent
connections may rapidly grow on the low-concurrency side
during communication. To optimize the performance under
such scenarios, we can add dynamic mode/stack switch for
StaR. Specifically, StaR NICs can periodically monitor the
concurrency degree on both ends during communication. If
the concurrency degree changes, we can dynamically switch
the stateless/stateful side in the connection, or even switch the
connection to use normal RDMA stack, all keeping transparent
to the upper-layer applications. We plan to study the dynamic
mode/stack switch in our future work.

3) Security consideration and incremental deployment: To
protect the stateless side, StaR security mechanism requires
all machines to be equipped with only StaR NICs that have
the security check module. Such precondition is feasible for
building new data centers, but may be too strong for existing
data centers since it is difficult to replace all NICs at once.
To incrementally deploy StaR in existing data centers, there
are two possible options. 1) Configure a dedicated network
partition that is separate to other network parts (e.g., us-
ing VLANs), and replace all the NICs in the partition to
StaR NICs. 2) Add a kernel security module to the hosts which
use conventional NICs, to filter malicious packets destined to
StaR stateless servers (may incur performance overhead).

IV. IMPLEMENTATION

Since commercial RDMA NICs have fixed stacks which
cannot be modified, we have implemented the StaR NIC
from scratch based on a Xilinx FPGA board with an
xcku040-ffva1156-2-e FPGA chip, four 10Gbps SFP+
ports (only one of them is used in our implementation), and 8
lanes of PCIe Gen 3 bus. Our FPGA implementation contains
3031 lines of Verilog code. Also, we implement the StaR
software lib based on the FPGA board driver provided by

Xilinx. Next, we first introduce the detailed packet format
used in StaR implementation, then, we describe our hardware
(FPGA) and software (lib) implementation, respectively.

A. Packet format

Eth Header IP Header
UDP 

Header
StaR

Header
StaR Payload ICRC FCS

14 bytes 20 bytes 8 bytes 20 bytes 4 bytes 2 bytes

Fig. 7. StaR packet format.

PTYPE OPT M A QPN

rsvd PSN

ADDR_H

ADDR_L

LEN CHECKSUM

0 4          6    7     8               16 31

Fig. 8. StaR packet header.

The format of the whole StaR packet is shown in Fig. 7. We
use a dedicated UDP port to identify StaR packets. For fast
classification, StaR packets to stateless and stateful processing
logic have different UDP ports. The specific format of the StaR
header is shown in Fig. 8, which is similar to the Infiniband
header. PTYPE indicates the data packet type. OPT indicates
the operation type (e.g., SEND/RECV/WRITE/READ). M
indicates the states migration, only used for the stateless side
to transfer states during connection setup. A indicates whether
it needs to reply an ACK (to trigger sending ACKs on the
stateless side). For RD/RDA and GD/GDA packets, ADDR H
and ADDR L together form a 64-bit memory address for
the transmitted data (ACKs just echo back the data address).
For WQEP/CQEP packets, the ADDR H and ADDR L fields
are not used and WQE/CQE is carried in the payload. LEN
indicates the payload length. QPN, PSN and CHECKSUM are
the same as in the Infiniband header.

B. Hardware implementation

We have implemented all StaR RNIC’s hardware processing
logic in the FPGA chip. Our hardware implementation archi-
tecture is shown in Fig. 9. From the left part of the figure
to the right, our FPGA implementation contains the following
modules.

1) DMA module: DMA module consists of a DMA engine
(IP core), a DMA buffer and our customized DMA processing
logic. The DMA processing logic contains a scheduler, arbiter
and several queues for buffering DMA requests/responses and
send events. The DMA processing logic coordinates the DMA
requests and DMA responses. The DMA requests from the
StaR processing logic will be checked for validity, scheduled,
and then executed by the DMA engine after queuing. The
executed request is buffered and the module notifies the StaR
processing logic via inserting send events into the send event
queue when the corresponding DMA response returns, i.e., the
DMA request has finished (return success when the data has
been DMAed, otherwise return error).
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2) StaR processing logic: This part processes the core
StaR stack logic, consists of two independent sub-parts, i.e.,
stateless processing and stateful processing. In general, the
two sub-parts have the same architecture, consisting of a
recv module and a send module, performing three common
functionalities: a) receiving and parsing packets from network,
b) DMA data and WQE/CQE from/to host memory, and c)
sending packets to network. In the recv module, after the
StaR receiving logic receives and parses the packet and has
something to DMA (data or WQE/CQE), it will generate DMA
requests to the DMA module, by putting DMA operation
metadata in the DMA Opt Queue and pushing DMA data
(if any) in the DMA Data Queue. In the send module, send
events from host DMA (e.g., local WQEs) or recv module
(e.g., ACKs triggered by received packets) are pushed in the
send event queue, then processed and packed with data (if
any) from DMA data queue by the StaR sending logic into the
form of packets, and passed to the security check module. The
difference between stateless and stateful processing sub-parts
is that packets and DMA operations are whether processed
based on the information carried in the incoming packets or
based on the states stored in the on-chip state buffer (local
state buffer and remote state buffer).

3) Security check module: Security check module consists
of a classifier module and a security registry table. It checks
both the incoming and outgoing packets. Particularly, all the
incoming and outgoing packets are checked by the classifier
module first. For outgoing packets, if not targeting any StaR
stateless processing on other NICs (differentiating by specific
UDP port), they will directly bypass the security module since
they will not cause security issue for stateless processing.
Otherwise, outgoing packets with stateless targets will go

through the security registry table, and will be sent out only
if there is a matched whitelist rule already installed. Since the
security rule is relatively complex containing multiple tuples
and fields (see §III-D), we implement them using exact match
based on high-speed on-chip SRAM. For incoming packets,
all packets except for those targeting the stateful processing
logic (differentiating by specific UDP port) will bypass the
security module. For packets targeting the StaR stateful logic,
we use the same protection mechanisms as in normal RDMA
(PD, MR, MW, etc.), and check packets based on states stored
locally in the security module.

4) Packet send/recv module: This module sends and re-
ceives packets through a 10Gbps SFP+ port. We implement it
based on an existing FPGA IP Core.

5) RDMA processing logic: For fair comparison under the
same hardware environment, we have implemented a simpli-
fied normal RDMA stack in parallel with StaR stack. The
RDMA stack is largely similar to the StaR stateful processing
logic in implementation (but only store one side’s states). We
omit the detailed description here.

Resource Utilization Available Utilization%
LUT 39338 242400 16.23

LUTRAM 6700 112800 5.94
FF 36138 484800 7.45

BRAM 140 600 23.33
TABLE II

FPGA RESOURCE CONSUMPTION FOR STAR STATELESS NIC.

FPGA resource consumption. For clarity, we separately
evaluate the resource consumption of our implementation
on the stateless part and the stateful part. Particularly, we
implement two dedicated NICs that only process StaR state-
less stack (denoted as StaR stateless NIC) and StaR stateful



Resource Utilization Available Utilization%
LUT 40277 242400 16.62

LUTRAM 6702 112800 5.94
FF 36882 484800 7.61

BRAM 178.5 600 29.75
TABLE III

FPGA RESOURCE CONSUMPTION FOR STAR STATEFUL NIC.

stack (denoted as StaR stateful NIC), respectively. Note that
each NIC is complete, having all other modules implemented
including DMA, packet send/recv, security check, etc., Table II
and Table III show the resource consumption on our FPGA.

C. Software implementation

We have implemented a simplified user-level lib compatible
with current RDMA API (emulate Linux libibverbs)
based on the FPGA board driver provided by Xilinx. We add a
flag to ibv_create_qp() for users to specify stateless or
stateful mode when establishing a connection. Moreover, we
modify the code inside several APIs (including ibv_reg_-
mr(), ibv_post_send(), etc.) so that StaR NIC can load
security rules and pack/send WQEP packets.

V. EVALUATION

We evaluate the performance of StaR in a real testbed
consisting of 9 machines, and compare it with normal RDMA
as well as the latest software-based solution.

A. Settings

1) Testbed environment: We build a small cluster, which
includes 9 physical machines. Each machine has two sockets
of Intel Xeon E5-2650 CPU and 64GB memory, and equipped
with a 10Gbps StaR NIC (FPGA board) and a 10Gbps
Mellanox ConnectX-3 NIC. All NICs are connected to an
Arista 7050S-64 switch with 64 10Gbps ports.

2) Methods compared: Besides StaR, three other methods
are compared: a) normal RDMA implemented on our FPGA
board (denoted as RDMA on FPGA), b) normal RDMA
using Mellanox ConnectX-3 NIC, which has the same 10Gbps
port speed as our FPGA board (denoted as RDMA), c)
ScalaRDMA [8] using Mellanox ConnectX-3 NIC9.

For both StaR and RDMA on FPGA, each connection
consumes 256 bytes of states, which is the same as Mellanox
ConnectX-3 NIC [29]. Based on the on-chip SRAM capacity
of our FPGA and considering the clock frequency after fitting,
we set the total capacity of the state buffer on StaR (stateful
side) and RDMA FPGA NIC to be 30KB, which can hold
the states of 120 connections on-chip. For ScalaRDMA, we
set the group capacity to be 240 connections (which is the
measured on-chip state buffer size of Mellanox CX3 NIC). A
new group is only created after the previous groups are full.
The timeslot for serving a group is 20us, and when the timeslot
is over, ScalaRDMA will switch to another group and serve
connections in it.

9We implement a simplified ScalaRDMA according to the paper [8], with
the help of discussion with the paper authors.

100

200

300

400

500

600

700

800

La
te

n
cy

  o
f 

tr
an

sm
is

si
o

n
(μ

s)

RDMA StaR

RDMA on FPGA StaR on FPGA RDMA ScalaRDMA

0%

20%

40%

60%

80%

100%

10 80 160 240 320 400

Th
ro

u
gh

p
u

t 
(n

o
m

)

Number of connections

(a) RPC

0%

20%

40%

60%

80%

100%

10 80 160 240 320 400

Th
ro

u
gh

p
u

t 
(n

o
rm

)

Number of connections

(b) Distributed Machine Learning

Fig. 10. Throughput under two workloads as the number of concurrent
connections varies.

3) Workloads evaluated: We mimic two application work-
loads: a) simple RPC and b) distributed machine learning.
In simple RPC, 8 machines work as clients, each posting
three SENDs to send three 32-byte data packets to another
server machine (mimic remote call). The server immediately
posts a SEND to send a 32-byte data packet back to a client
(mimic return value) after receiving all the three packets
from it. Each client continuously repeat above remote call
again after receiving the return value from the server. In
distributed machine learning, the packet transmission process
is the same as that in RPC. However, all clients are required to
be synchronized, i.e., the server will simultaneously return the
response packets to all clients after receiving all clients’ three
packets, thus to mimic the training process in synchronous
Parameter-Server architecture [11]. In StaR, the server works
fixedly in stateless mode and all the clients work fixedly in
stateful mode. We vary the number of concurrent connections
by running multiple connections between a client and the
server. To avoid the interference of CPU, we ensure that the
overall CPU utilization is low both at the server and all the
clients, under all the evaluated concurrency degrees.

B. Throughput

Figure 10 shows the throughput (normalized to link band-
width) under both RPC and distributed machine learning work-
loads. For both RDMA and RDMA on FPGA, the throughput
drops when the number of connections exceeds the on-chip
memory capacity (∼240 for CX3 NIC and 120 for the FPGA),
due to state miss. On the contrary, as the concurrency degree
grows, StaR reaches the maximum throughput and remains at
the peak, not suffering from the scalability issue. When the
number of concurrent connections grows, StaR has a through-
put ∼4.13x and ∼2.2x higher than RDMA on FPGA and
RDMA, under RPC workload, and ∼2.9x and ∼1.4x higher
than RDMA on FPGA and RDMA, under distributed machine
learning workload, respectively. When the concurrency degree
is low, StaR performs inferior because the extra RTT incurred
for delivering WQEP/CQEP packets. Moreover, our FGPA
implementation is not as efficient as the commercial RNIC,
leading to inferior performance of StaR and RDMA on FPGA
under low concurrency. Under such case, user can explicitly
choose normal RDMA or the StaR NIC can automatically
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Fig. 11. Throughput under two workloads as the number of concurrent
connections varies.
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negotiate to normal RDMA mode as introduced in §III-C1
(auto-negotiation is not enabled in the experiment).

ScalaRDMA can keep the peak performance as StaR under
simple RPC workload (Fig. 10(a)). This is because connections
are not related to each other, so the connections in one working
group are enough to saturate the maximum bandwidth. How-
ever, switching between groups incur CPU overhead, which
may cause throughput degradation in network with higher
link bandwidth (not evaluated due to the lack of enough
hardware). Nevertheless, when there is dependency among
connections, the grouping mechanism in ScalaRDMA will hurt
the performance. As shown in Fig. 10(b), under distributed
machine learning workload, the throughput of ScalaRDMA
begins to drop when the number of connections exceeds
260, and remains only less than 75% of StaR under 400
connections. The reason is that it is difficult for ScalaRDMA
middleware to estimate the exact time for each group to
complete operations. Particularly, a timeslot too long may
cause unnecessary waiting (connections in other groups which
have packets to send need to wait for connections in the
working group which have no packets to send), and a timeslot
too short may incur excessive switching overhead (on-chip
connection state update, thread scheduling, etc.), both impair-
ing the performance. StaR is not limited to the application
patterns, keeping superior performance under both scenarios.

C. Latency

Fig. 11(a) shows the average latency for a client finishing a
remote call (3 data packets) and receiving the return value
from the server (1 data packet) under both simple RPC
and distributed machine learning workloads. Similar to the
throughput, when the number of connections exceeds the on-
chip memory capacity, the latency of RDMA and RDMA on
FPGA rapidly grows due to state miss. However, the latency
of StaR grows slowly (almost linearly) as the concurrency
degree grows, since state miss has not occurred. At the highest
concurrency level in our evaluation, RDMA and RDMA on
FPGA have latency ∼1.5x and ∼2.9x higher than StaR under

RPC workload, and ∼1.6x and ∼3.2x higher than StaR under
distributed machine learning workload, respectively. As intro-
duced before, ScalaRDMA performs well under simple RPC
workload. However, ScalaRDMA’s performance is inferior
under distributed machine learning workload due to group
scheduling overhead, which has latency ∼1.5x higher than
StaR when there are 400 concurrent connections.

D. Overhead of security check

We evaluate the performance overhead of security check
by intentionally installing and removing the security module
in StaR, respectively. Fig. 12 shows the throughput of StaR
under simple RPC workload, with and without the security
check (SC) module. Each connection generates a whitelist rule
in the security registry table in the stateful side’s NIC (only
one PD and one MR is used for data transmission in each
connection). Since looking up entries in on-chip SRAM is
very fast, the performance overhead is low. Fig. 12 shows that
the throughput are almost the same for StaR with and without
security check module.

VI. CONCLUSION

The RDMA scalability problem caused by the limited on-
chip NIC memory has bothered the community for several
years. Although previous works try to mitigate or avoid the
problem by limiting the RDMA usage pattern, the problem
remains unsolved. In this paper, we propose StaR that totally
removes the RDMA NIC memory constraint which causes the
scalability issue. By moving states to the other communication
end, StaR makes the RDMA NIC on the bottleneck side totally
stateless. As such, it can process RDMA packets fast enough
even when there is a large number of concurrent connections.
We have implemented StaR on a 10Gbps FPGA board and
evaluated its performance on a 9-machine testbed. Results
show that StaR can significantly improve the performance
under high concurrency scenarios, reaching up to 4.13x and
1.35x throughput compared to the original RDMA NIC and the
latest software-based solution, respectively. To the best of our
knowledge, StaR is the first work that fundamentally solves the
RDMA scalability problem by making the bottleneck RDMA
NIC stateless.
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